Properties

Label 2-270-5.4-c1-0-7
Degree $2$
Conductor $270$
Sign $-0.974 + 0.223i$
Analytic cond. $2.15596$
Root an. cond. $1.46831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + (−2.17 + 0.5i)5-s − 4.35i·7-s + i·8-s + (0.5 + 2.17i)10-s − 4.35·11-s − 4.35·14-s + 16-s − 4i·17-s − 6·19-s + (2.17 − 0.5i)20-s + 4.35i·22-s − 2i·23-s + (4.50 − 2.17i)25-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + (−0.974 + 0.223i)5-s − 1.64i·7-s + 0.353i·8-s + (0.158 + 0.689i)10-s − 1.31·11-s − 1.16·14-s + 0.250·16-s − 0.970i·17-s − 1.37·19-s + (0.487 − 0.111i)20-s + 0.929i·22-s − 0.417i·23-s + (0.900 − 0.435i)25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 + 0.223i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.974 + 0.223i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $-0.974 + 0.223i$
Analytic conductor: \(2.15596\)
Root analytic conductor: \(1.46831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1/2),\ -0.974 + 0.223i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0701231 - 0.619259i\)
\(L(\frac12)\) \(\approx\) \(0.0701231 - 0.619259i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 + (2.17 - 0.5i)T \)
good7 \( 1 + 4.35iT - 7T^{2} \)
11 \( 1 + 4.35T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 4iT - 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
23 \( 1 + 2iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 7T + 31T^{2} \)
37 \( 1 - 8.71iT - 37T^{2} \)
41 \( 1 - 8.71T + 41T^{2} \)
43 \( 1 + 8.71iT - 43T^{2} \)
47 \( 1 + 2iT - 47T^{2} \)
53 \( 1 + 3iT - 53T^{2} \)
59 \( 1 - 8.71T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 + 8.71iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 4.35iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 5iT - 83T^{2} \)
89 \( 1 + 8.71T + 89T^{2} \)
97 \( 1 - 4.35iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.29258745136216931977106285123, −10.60384238929494622561451855758, −10.03597991959064327200141034255, −8.455040859108733109926187603313, −7.68264471490111978070905826614, −6.74297340677452860664192877079, −4.83113162903713253478382194672, −4.04094593557720861627866626263, −2.77550267018518104598069753251, −0.46931538822514545683082698665, 2.61509841044716268569206278134, 4.25958593489423691737548826188, 5.39705184573516012405240074521, 6.27720123821195438392519419345, 7.74882062897673679131828797956, 8.351675457227233897594458238514, 9.124065748021794419120202126013, 10.49092777858386068241926224544, 11.51685776263620046715829016576, 12.67467644605015058570294106258

Graph of the $Z$-function along the critical line