L(s) = 1 | − i·2-s − 4-s + (1.94 − 3.36i)5-s + i·8-s + (−3.36 − 1.94i)10-s + (3.41 − 1.97i)11-s + (−2.46 + 1.42i)13-s + 16-s + (−0.371 + 0.642i)17-s + (−1.54 + 0.892i)19-s + (−1.94 + 3.36i)20-s + (−1.97 − 3.41i)22-s + (−5.41 − 3.12i)23-s + (−5.07 − 8.78i)25-s + (1.42 + 2.46i)26-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (0.870 − 1.50i)5-s + 0.353i·8-s + (−1.06 − 0.615i)10-s + (1.03 − 0.594i)11-s + (−0.684 + 0.395i)13-s + 0.250·16-s + (−0.0899 + 0.155i)17-s + (−0.354 + 0.204i)19-s + (−0.435 + 0.753i)20-s + (−0.420 − 0.728i)22-s + (−1.12 − 0.651i)23-s + (−1.01 − 1.75i)25-s + (0.279 + 0.483i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0729i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0729i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.541585999\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.541585999\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.94 + 3.36i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.41 + 1.97i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.46 - 1.42i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.371 - 0.642i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.54 - 0.892i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.41 + 3.12i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.50 - 1.44i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.51iT - 31T^{2} \) |
| 37 | \( 1 + (1.50 + 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (5.24 + 9.08i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.471 + 0.816i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2.18T + 47T^{2} \) |
| 53 | \( 1 + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 0.0211T + 59T^{2} \) |
| 61 | \( 1 + 2.46iT - 61T^{2} \) |
| 67 | \( 1 - 13.4T + 67T^{2} \) |
| 71 | \( 1 + 1.94iT - 71T^{2} \) |
| 73 | \( 1 + (4.20 + 2.42i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 3.63T + 79T^{2} \) |
| 83 | \( 1 + (4.02 - 6.98i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.63 - 8.02i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (16.2 + 9.40i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.630656276581206084539722135848, −8.154926380166336699508851223591, −6.79642659176732772806451242237, −5.96143043778500804604611267520, −5.25291534480596877724170817533, −4.41363639529242710054073558873, −3.77535304454630415563929694037, −2.29695228638297342700187821481, −1.60929330395034049353390662070, −0.48590678720791506874408313476,
1.67040151558491165231775582482, 2.69364520404514024022453452297, 3.61673040299888404919519842368, 4.65481391460417952996846383031, 5.60359249130197295427424748787, 6.43587160980736389385132954106, 6.77672780691265227281051433650, 7.51019175927600822241552108270, 8.357317095177749219058530210383, 9.426460370314220905050086333877