Properties

Label 2-2646-1.1-c1-0-13
Degree $2$
Conductor $2646$
Sign $1$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 1.64·5-s + 8-s − 1.64·10-s − 1.64·11-s − 0.645·13-s + 16-s + 1.64·17-s − 2·19-s − 1.64·20-s − 1.64·22-s + 9.29·23-s − 2.29·25-s − 0.645·26-s + 7.64·29-s − 0.645·31-s + 32-s + 1.64·34-s + 3.93·37-s − 2·38-s − 1.64·40-s + 4.93·41-s + 5·43-s − 1.64·44-s + 9.29·46-s + 10.9·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.736·5-s + 0.353·8-s − 0.520·10-s − 0.496·11-s − 0.179·13-s + 0.250·16-s + 0.399·17-s − 0.458·19-s − 0.368·20-s − 0.350·22-s + 1.93·23-s − 0.458·25-s − 0.126·26-s + 1.41·29-s − 0.115·31-s + 0.176·32-s + 0.282·34-s + 0.647·37-s − 0.324·38-s − 0.260·40-s + 0.771·41-s + 0.762·43-s − 0.248·44-s + 1.36·46-s + 1.59·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2646} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.459333532\)
\(L(\frac12)\) \(\approx\) \(2.459333532\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 1.64T + 5T^{2} \)
11 \( 1 + 1.64T + 11T^{2} \)
13 \( 1 + 0.645T + 13T^{2} \)
17 \( 1 - 1.64T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 - 9.29T + 23T^{2} \)
29 \( 1 - 7.64T + 29T^{2} \)
31 \( 1 + 0.645T + 31T^{2} \)
37 \( 1 - 3.93T + 37T^{2} \)
41 \( 1 - 4.93T + 41T^{2} \)
43 \( 1 - 5T + 43T^{2} \)
47 \( 1 - 10.9T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 13.6T + 59T^{2} \)
61 \( 1 + 12.6T + 61T^{2} \)
67 \( 1 - 8.29T + 67T^{2} \)
71 \( 1 - 10.3T + 71T^{2} \)
73 \( 1 - 10.5T + 73T^{2} \)
79 \( 1 + 15.2T + 79T^{2} \)
83 \( 1 - 2.70T + 83T^{2} \)
89 \( 1 - 10.9T + 89T^{2} \)
97 \( 1 - 7.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.783201829758983090886125222924, −7.87373762664283195166597787366, −7.38019787192156454827497270862, −6.52942671909187957809797676204, −5.66966395975908589821427917253, −4.81783855596281338002717693695, −4.17757073131082453283400669081, −3.18870127220997976273791648814, −2.44581985130163910558282353412, −0.895046676809971923298890429254, 0.895046676809971923298890429254, 2.44581985130163910558282353412, 3.18870127220997976273791648814, 4.17757073131082453283400669081, 4.81783855596281338002717693695, 5.66966395975908589821427917253, 6.52942671909187957809797676204, 7.38019787192156454827497270862, 7.87373762664283195166597787366, 8.783201829758983090886125222924

Graph of the $Z$-function along the critical line