L(s) = 1 | − i·3-s + (−1.48 − 1.67i)5-s − 2.80i·7-s − 9-s + 11-s + 5.11i·13-s + (−1.67 + 1.48i)15-s + 4.54i·17-s − 4.57·19-s − 2.80·21-s + 4i·23-s + (−0.612 + 4.96i)25-s + i·27-s + 2.38·29-s + 0.962·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.662 − 0.749i)5-s − 1.06i·7-s − 0.333·9-s + 0.301·11-s + 1.41i·13-s + (−0.432 + 0.382i)15-s + 1.10i·17-s − 1.04·19-s − 0.612·21-s + 0.834i·23-s + (−0.122 + 0.992i)25-s + 0.192i·27-s + 0.443·29-s + 0.172·31-s + ⋯ |
Λ(s)=(=(2640s/2ΓC(s)L(s)(0.749−0.662i)Λ(2−s)
Λ(s)=(=(2640s/2ΓC(s+1/2)L(s)(0.749−0.662i)Λ(1−s)
Degree: |
2 |
Conductor: |
2640
= 24⋅3⋅5⋅11
|
Sign: |
0.749−0.662i
|
Analytic conductor: |
21.0805 |
Root analytic conductor: |
4.59135 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2640(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2640, ( :1/2), 0.749−0.662i)
|
Particular Values
L(1) |
≈ |
0.9304004044 |
L(21) |
≈ |
0.9304004044 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(1.48+1.67i)T |
| 11 | 1−T |
good | 7 | 1+2.80iT−7T2 |
| 13 | 1−5.11iT−13T2 |
| 17 | 1−4.54iT−17T2 |
| 19 | 1+4.57T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1−2.38T+29T2 |
| 31 | 1−0.962T+31T2 |
| 37 | 1−1.61iT−37T2 |
| 41 | 1+2.38T+41T2 |
| 43 | 1−2.80iT−43T2 |
| 47 | 1−4.31iT−47T2 |
| 53 | 1−6.57iT−53T2 |
| 59 | 1+13.2T+59T2 |
| 61 | 1−7.92T+61T2 |
| 67 | 1+10.7iT−67T2 |
| 71 | 1−7.35T+71T2 |
| 73 | 1+6.41iT−73T2 |
| 79 | 1−1.35T+79T2 |
| 83 | 1+0.806iT−83T2 |
| 89 | 1−2.96T+89T2 |
| 97 | 1+9.92iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.859718017805975877641640756416, −8.098054426196931291074192773546, −7.51026965223923202700426025492, −6.68522787919024080281659035753, −6.11381695950186321501888067999, −4.79082113351644864334225970656, −4.19774384854639048745462260440, −3.50543622828446913261807195992, −1.91266082906115039153081005636, −1.10955926487437224064424706370,
0.34006363423594707186063484846, 2.40387526881758131931601682775, 2.97215898817102099861262058599, 3.90567108098387751749639048552, 4.85787927526018062199198510015, 5.62647482652018955337913239359, 6.45752506735885074438415150597, 7.22951611552551668872662720916, 8.297680224396856237514722408505, 8.557266865656329546832632906577