L(s) = 1 | − i·3-s + (0.311 + 2.21i)5-s − 4.90i·7-s − 9-s + 11-s − 4.14i·13-s + (2.21 − 0.311i)15-s − 5.33i·17-s − 5.18·19-s − 4.90·21-s + 4i·23-s + (−4.80 + 1.37i)25-s + i·27-s − 1.80·29-s − 2.62·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.139 + 0.990i)5-s − 1.85i·7-s − 0.333·9-s + 0.301·11-s − 1.15i·13-s + (0.571 − 0.0803i)15-s − 1.29i·17-s − 1.18·19-s − 1.06·21-s + 0.834i·23-s + (−0.961 + 0.275i)25-s + 0.192i·27-s − 0.335·29-s − 0.470·31-s + ⋯ |
Λ(s)=(=(2640s/2ΓC(s)L(s)(−0.990+0.139i)Λ(2−s)
Λ(s)=(=(2640s/2ΓC(s+1/2)L(s)(−0.990+0.139i)Λ(1−s)
Degree: |
2 |
Conductor: |
2640
= 24⋅3⋅5⋅11
|
Sign: |
−0.990+0.139i
|
Analytic conductor: |
21.0805 |
Root analytic conductor: |
4.59135 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2640(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2640, ( :1/2), −0.990+0.139i)
|
Particular Values
L(1) |
≈ |
0.8813955548 |
L(21) |
≈ |
0.8813955548 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(−0.311−2.21i)T |
| 11 | 1−T |
good | 7 | 1+4.90iT−7T2 |
| 13 | 1+4.14iT−13T2 |
| 17 | 1+5.33iT−17T2 |
| 19 | 1+5.18T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+1.80T+29T2 |
| 31 | 1+2.62T+31T2 |
| 37 | 1−5.80iT−37T2 |
| 41 | 1−1.80T+41T2 |
| 43 | 1−4.90iT−43T2 |
| 47 | 1+7.05iT−47T2 |
| 53 | 1−7.18iT−53T2 |
| 59 | 1−1.67T+59T2 |
| 61 | 1−0.755T+61T2 |
| 67 | 1−4.85iT−67T2 |
| 71 | 1+0.428T+71T2 |
| 73 | 1+12.7iT−73T2 |
| 79 | 1+6.42T+79T2 |
| 83 | 1+2.90iT−83T2 |
| 89 | 1+0.622T+89T2 |
| 97 | 1+2.75iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.190603013709827337523653058503, −7.53628579320893297039126451593, −7.07104601831783766970802977765, −6.45878661838847249585147021706, −5.51618257470267948394476853436, −4.39892290537778238486795716724, −3.52303173437102395124376152919, −2.77514270505209182235749349670, −1.46287185118712345549711804443, −0.27579647668228536578355633447,
1.77532473541198652605608151932, 2.39371914054203298518144493601, 3.86091782906617814168235339385, 4.46594944128980453040777266346, 5.40661109872207471851989109025, 5.96322073996326127071579241637, 6.67463345187058765259299951920, 8.186505105761158373685278597371, 8.600327972004237773635333529809, 9.139802904578349493196110997163