L(s) = 1 | − i·3-s + (2.17 − 0.539i)5-s − 0.290i·7-s − 9-s + 11-s − 6.97i·13-s + (−0.539 − 2.17i)15-s + 4.78i·17-s + 7.75·19-s − 0.290·21-s + 4i·23-s + (4.41 − 2.34i)25-s + i·27-s + 7.41·29-s − 6.34·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.970 − 0.241i)5-s − 0.109i·7-s − 0.333·9-s + 0.301·11-s − 1.93i·13-s + (−0.139 − 0.560i)15-s + 1.16i·17-s + 1.77·19-s − 0.0634·21-s + 0.834i·23-s + (0.883 − 0.468i)25-s + 0.192i·27-s + 1.37·29-s − 1.13·31-s + ⋯ |
Λ(s)=(=(2640s/2ΓC(s)L(s)(0.241+0.970i)Λ(2−s)
Λ(s)=(=(2640s/2ΓC(s+1/2)L(s)(0.241+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
2640
= 24⋅3⋅5⋅11
|
Sign: |
0.241+0.970i
|
Analytic conductor: |
21.0805 |
Root analytic conductor: |
4.59135 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2640(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2640, ( :1/2), 0.241+0.970i)
|
Particular Values
L(1) |
≈ |
2.302306177 |
L(21) |
≈ |
2.302306177 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(−2.17+0.539i)T |
| 11 | 1−T |
good | 7 | 1+0.290iT−7T2 |
| 13 | 1+6.97iT−13T2 |
| 17 | 1−4.78iT−17T2 |
| 19 | 1−7.75T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1−7.41T+29T2 |
| 31 | 1+6.34T+31T2 |
| 37 | 1+3.41iT−37T2 |
| 41 | 1+7.41T+41T2 |
| 43 | 1−0.290iT−43T2 |
| 47 | 1+5.26iT−47T2 |
| 53 | 1+5.75iT−53T2 |
| 59 | 1−3.60T+59T2 |
| 61 | 1+6.68T+61T2 |
| 67 | 1+6.15iT−67T2 |
| 71 | 1−5.07T+71T2 |
| 73 | 1−1.12iT−73T2 |
| 79 | 1+0.921T+79T2 |
| 83 | 1−1.70iT−83T2 |
| 89 | 1+4.34T+89T2 |
| 97 | 1−4.68iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.612426118961096915249678971397, −7.951557023014428278439246715571, −7.21571676879084708649239357116, −6.32900401284163195807664710552, −5.48813961008071820778141505275, −5.23238595963172697069376454004, −3.65507327557211832922316719412, −2.90823864962864757402690948332, −1.72359574976105642656954148587, −0.841842234192493177452283137314,
1.28855809257500958653215153678, 2.42771267176284252716214710961, 3.25956660427373176245916677486, 4.42885752643919455481606105279, 5.04494629396333221717947691578, 5.90651269742790002367478221782, 6.78019996983690098574598174258, 7.23786660927260251281226627345, 8.572906420334376669082415727836, 9.238236670983916725768442536904