L(s) = 1 | − i·3-s + (2.17 − 0.539i)5-s − 0.290i·7-s − 9-s + 11-s − 6.97i·13-s + (−0.539 − 2.17i)15-s + 4.78i·17-s + 7.75·19-s − 0.290·21-s + 4i·23-s + (4.41 − 2.34i)25-s + i·27-s + 7.41·29-s − 6.34·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.970 − 0.241i)5-s − 0.109i·7-s − 0.333·9-s + 0.301·11-s − 1.93i·13-s + (−0.139 − 0.560i)15-s + 1.16i·17-s + 1.77·19-s − 0.0634·21-s + 0.834i·23-s + (0.883 − 0.468i)25-s + 0.192i·27-s + 1.37·29-s − 1.13·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.241 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.302306177\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.302306177\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2.17 + 0.539i)T \) |
| 11 | \( 1 - T \) |
good | 7 | \( 1 + 0.290iT - 7T^{2} \) |
| 13 | \( 1 + 6.97iT - 13T^{2} \) |
| 17 | \( 1 - 4.78iT - 17T^{2} \) |
| 19 | \( 1 - 7.75T + 19T^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 - 7.41T + 29T^{2} \) |
| 31 | \( 1 + 6.34T + 31T^{2} \) |
| 37 | \( 1 + 3.41iT - 37T^{2} \) |
| 41 | \( 1 + 7.41T + 41T^{2} \) |
| 43 | \( 1 - 0.290iT - 43T^{2} \) |
| 47 | \( 1 + 5.26iT - 47T^{2} \) |
| 53 | \( 1 + 5.75iT - 53T^{2} \) |
| 59 | \( 1 - 3.60T + 59T^{2} \) |
| 61 | \( 1 + 6.68T + 61T^{2} \) |
| 67 | \( 1 + 6.15iT - 67T^{2} \) |
| 71 | \( 1 - 5.07T + 71T^{2} \) |
| 73 | \( 1 - 1.12iT - 73T^{2} \) |
| 79 | \( 1 + 0.921T + 79T^{2} \) |
| 83 | \( 1 - 1.70iT - 83T^{2} \) |
| 89 | \( 1 + 4.34T + 89T^{2} \) |
| 97 | \( 1 - 4.68iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.612426118961096915249678971397, −7.951557023014428278439246715571, −7.21571676879084708649239357116, −6.32900401284163195807664710552, −5.48813961008071820778141505275, −5.23238595963172697069376454004, −3.65507327557211832922316719412, −2.90823864962864757402690948332, −1.72359574976105642656954148587, −0.841842234192493177452283137314,
1.28855809257500958653215153678, 2.42771267176284252716214710961, 3.25956660427373176245916677486, 4.42885752643919455481606105279, 5.04494629396333221717947691578, 5.90651269742790002367478221782, 6.78019996983690098574598174258, 7.23786660927260251281226627345, 8.572906420334376669082415727836, 9.238236670983916725768442536904