Properties

Label 2-2640-5.4-c1-0-47
Degree $2$
Conductor $2640$
Sign $0.241 + 0.970i$
Analytic cond. $21.0805$
Root an. cond. $4.59135$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (2.17 − 0.539i)5-s − 0.290i·7-s − 9-s + 11-s − 6.97i·13-s + (−0.539 − 2.17i)15-s + 4.78i·17-s + 7.75·19-s − 0.290·21-s + 4i·23-s + (4.41 − 2.34i)25-s + i·27-s + 7.41·29-s − 6.34·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.970 − 0.241i)5-s − 0.109i·7-s − 0.333·9-s + 0.301·11-s − 1.93i·13-s + (−0.139 − 0.560i)15-s + 1.16i·17-s + 1.77·19-s − 0.0634·21-s + 0.834i·23-s + (0.883 − 0.468i)25-s + 0.192i·27-s + 1.37·29-s − 1.13·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.241 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2640\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 11\)
Sign: $0.241 + 0.970i$
Analytic conductor: \(21.0805\)
Root analytic conductor: \(4.59135\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2640} (529, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2640,\ (\ :1/2),\ 0.241 + 0.970i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.302306177\)
\(L(\frac12)\) \(\approx\) \(2.302306177\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-2.17 + 0.539i)T \)
11 \( 1 - T \)
good7 \( 1 + 0.290iT - 7T^{2} \)
13 \( 1 + 6.97iT - 13T^{2} \)
17 \( 1 - 4.78iT - 17T^{2} \)
19 \( 1 - 7.75T + 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 - 7.41T + 29T^{2} \)
31 \( 1 + 6.34T + 31T^{2} \)
37 \( 1 + 3.41iT - 37T^{2} \)
41 \( 1 + 7.41T + 41T^{2} \)
43 \( 1 - 0.290iT - 43T^{2} \)
47 \( 1 + 5.26iT - 47T^{2} \)
53 \( 1 + 5.75iT - 53T^{2} \)
59 \( 1 - 3.60T + 59T^{2} \)
61 \( 1 + 6.68T + 61T^{2} \)
67 \( 1 + 6.15iT - 67T^{2} \)
71 \( 1 - 5.07T + 71T^{2} \)
73 \( 1 - 1.12iT - 73T^{2} \)
79 \( 1 + 0.921T + 79T^{2} \)
83 \( 1 - 1.70iT - 83T^{2} \)
89 \( 1 + 4.34T + 89T^{2} \)
97 \( 1 - 4.68iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.612426118961096915249678971397, −7.951557023014428278439246715571, −7.21571676879084708649239357116, −6.32900401284163195807664710552, −5.48813961008071820778141505275, −5.23238595963172697069376454004, −3.65507327557211832922316719412, −2.90823864962864757402690948332, −1.72359574976105642656954148587, −0.841842234192493177452283137314, 1.28855809257500958653215153678, 2.42771267176284252716214710961, 3.25956660427373176245916677486, 4.42885752643919455481606105279, 5.04494629396333221717947691578, 5.90651269742790002367478221782, 6.78019996983690098574598174258, 7.23786660927260251281226627345, 8.572906420334376669082415727836, 9.238236670983916725768442536904

Graph of the $Z$-function along the critical line