Properties

Label 2-264-264.131-c2-0-18
Degree $2$
Conductor $264$
Sign $-0.939 - 0.342i$
Analytic cond. $7.19347$
Root an. cond. $2.68206$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + (1 + 2.82i)3-s + 4·4-s + (−2 − 5.65i)6-s − 8·8-s + (−7.00 + 5.65i)9-s + (−7 + 8.48i)11-s + (4 + 11.3i)12-s + 16·16-s − 2·17-s + (14.0 − 11.3i)18-s + 16.9i·19-s + (14 − 16.9i)22-s + (−8 − 22.6i)24-s − 25·25-s + ⋯
L(s)  = 1  − 2-s + (0.333 + 0.942i)3-s + 4-s + (−0.333 − 0.942i)6-s − 8-s + (−0.777 + 0.628i)9-s + (−0.636 + 0.771i)11-s + (0.333 + 0.942i)12-s + 16-s − 0.117·17-s + (0.777 − 0.628i)18-s + 0.893i·19-s + (0.636 − 0.771i)22-s + (−0.333 − 0.942i)24-s − 25-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(264\)    =    \(2^{3} \cdot 3 \cdot 11\)
Sign: $-0.939 - 0.342i$
Analytic conductor: \(7.19347\)
Root analytic conductor: \(2.68206\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{264} (131, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 264,\ (\ :1),\ -0.939 - 0.342i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.114329 + 0.646743i\)
\(L(\frac12)\) \(\approx\) \(0.114329 + 0.646743i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 + (-1 - 2.82i)T \)
11 \( 1 + (7 - 8.48i)T \)
good5 \( 1 + 25T^{2} \)
7 \( 1 + 49T^{2} \)
13 \( 1 + 169T^{2} \)
17 \( 1 + 2T + 289T^{2} \)
19 \( 1 - 16.9iT - 361T^{2} \)
23 \( 1 + 529T^{2} \)
29 \( 1 - 841T^{2} \)
31 \( 1 - 961T^{2} \)
37 \( 1 - 1.36e3T^{2} \)
41 \( 1 + 46T + 1.68e3T^{2} \)
43 \( 1 - 84.8iT - 1.84e3T^{2} \)
47 \( 1 + 2.20e3T^{2} \)
53 \( 1 + 2.80e3T^{2} \)
59 \( 1 + 84.8iT - 3.48e3T^{2} \)
61 \( 1 + 3.72e3T^{2} \)
67 \( 1 - 62T + 4.48e3T^{2} \)
71 \( 1 + 5.04e3T^{2} \)
73 \( 1 - 33.9iT - 5.32e3T^{2} \)
79 \( 1 + 6.24e3T^{2} \)
83 \( 1 - 158T + 6.88e3T^{2} \)
89 \( 1 - 101. iT - 7.92e3T^{2} \)
97 \( 1 - 94T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.80336749437518193559562541059, −10.91779064561977793638239571376, −9.987606708717199599693871560417, −9.552767115905468611488245600374, −8.321587562292204631537915704994, −7.68845976713507922485247517972, −6.25786266993057920231026535832, −4.98341732910305405642762075367, −3.47699813429912053767108011948, −2.09435769287856637016964126806, 0.41410663730054621594562737847, 2.05531474876567140283238055154, 3.26241689648122793973265438821, 5.57392090263471256081235437610, 6.62536571140026943070190178960, 7.54175650456623042283414451699, 8.391440902035262872083499578145, 9.132922022417845522915308446752, 10.32865806456957640401268573534, 11.32627065978106592864861146579

Graph of the $Z$-function along the critical line