L(s) = 1 | + (−0.851 + 1.12i)2-s + (0.338 − 1.69i)3-s + (−0.548 − 1.92i)4-s − 3.30·5-s + (1.62 + 1.82i)6-s + 3.62i·7-s + (2.63 + 1.01i)8-s + (−2.77 − 1.14i)9-s + (2.81 − 3.73i)10-s + i·11-s + (−3.45 + 0.281i)12-s + 0.410i·13-s + (−4.09 − 3.09i)14-s + (−1.11 + 5.61i)15-s + (−3.39 + 2.11i)16-s + 7.89i·17-s + ⋯ |
L(s) = 1 | + (−0.602 + 0.798i)2-s + (0.195 − 0.980i)3-s + (−0.274 − 0.961i)4-s − 1.47·5-s + (0.665 + 0.746i)6-s + 1.37i·7-s + (0.932 + 0.360i)8-s + (−0.923 − 0.383i)9-s + (0.890 − 1.18i)10-s + 0.301i·11-s + (−0.996 + 0.0812i)12-s + 0.113i·13-s + (−1.09 − 0.826i)14-s + (−0.288 + 1.45i)15-s + (−0.849 + 0.527i)16-s + 1.91i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.844 - 0.535i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.844 - 0.535i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0888008 + 0.305935i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0888008 + 0.305935i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.851 - 1.12i)T \) |
| 3 | \( 1 + (-0.338 + 1.69i)T \) |
| 11 | \( 1 - iT \) |
good | 5 | \( 1 + 3.30T + 5T^{2} \) |
| 7 | \( 1 - 3.62iT - 7T^{2} \) |
| 13 | \( 1 - 0.410iT - 13T^{2} \) |
| 17 | \( 1 - 7.89iT - 17T^{2} \) |
| 19 | \( 1 + 3.45T + 19T^{2} \) |
| 23 | \( 1 + 5.83T + 23T^{2} \) |
| 29 | \( 1 - 1.26T + 29T^{2} \) |
| 31 | \( 1 + 2.74iT - 31T^{2} \) |
| 37 | \( 1 + 2.82iT - 37T^{2} \) |
| 41 | \( 1 + 2.58iT - 41T^{2} \) |
| 43 | \( 1 + 10.2T + 43T^{2} \) |
| 47 | \( 1 - 5.46T + 47T^{2} \) |
| 53 | \( 1 - 7.80T + 53T^{2} \) |
| 59 | \( 1 + 5.76iT - 59T^{2} \) |
| 61 | \( 1 - 7.43iT - 61T^{2} \) |
| 67 | \( 1 - 2.12T + 67T^{2} \) |
| 71 | \( 1 + 14.6T + 71T^{2} \) |
| 73 | \( 1 + 2.31T + 73T^{2} \) |
| 79 | \( 1 - 3.31iT - 79T^{2} \) |
| 83 | \( 1 + 0.748iT - 83T^{2} \) |
| 89 | \( 1 - 2.22iT - 89T^{2} \) |
| 97 | \( 1 - 13.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24729420719523058067279996486, −11.62287732394484315960489726533, −10.41777103961490774763551725406, −8.861448907588147719663220413764, −8.355970163987707585928272338521, −7.69002239835502812381969039330, −6.53409068868345419316968174544, −5.69828359844460869042868740437, −4.03219069397215699487136279143, −2.03481474573368129160094739565,
0.28695668706297186815944308845, 3.06907474782349155147126737542, 3.99100495482289423225209615423, 4.68530251715309391561008874359, 7.09305622686239862368113814021, 7.921536474987186069445196509175, 8.726821976596731667337177213463, 9.924356635385646312184373411018, 10.58724450275436535934704155947, 11.45224337461228597750785490598