L(s) = 1 | + (0.809 + 0.587i)3-s + (0.773 − 2.38i)5-s + (2.27 − 1.65i)7-s + (0.309 + 0.951i)9-s + (−2.77 + 1.81i)11-s + (−1.22 − 3.78i)13-s + (2.02 − 1.47i)15-s + (0.175 − 0.539i)17-s + (5.11 + 3.71i)19-s + 2.81·21-s + 2.88·23-s + (−1.02 − 0.744i)25-s + (−0.309 + 0.951i)27-s + (−5.90 + 4.28i)29-s + (2.84 + 8.76i)31-s + ⋯ |
L(s) = 1 | + (0.467 + 0.339i)3-s + (0.345 − 1.06i)5-s + (0.860 − 0.625i)7-s + (0.103 + 0.317i)9-s + (−0.837 + 0.546i)11-s + (−0.341 − 1.04i)13-s + (0.522 − 0.379i)15-s + (0.0425 − 0.130i)17-s + (1.17 + 0.851i)19-s + 0.614·21-s + 0.601·23-s + (−0.205 − 0.148i)25-s + (−0.0594 + 0.183i)27-s + (−1.09 + 0.796i)29-s + (0.511 + 1.57i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 + 0.398i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.917 + 0.398i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.55199 - 0.322543i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.55199 - 0.322543i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (2.77 - 1.81i)T \) |
good | 5 | \( 1 + (-0.773 + 2.38i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-2.27 + 1.65i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.22 + 3.78i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.175 + 0.539i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-5.11 - 3.71i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 2.88T + 23T^{2} \) |
| 29 | \( 1 + (5.90 - 4.28i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-2.84 - 8.76i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-0.283 + 0.206i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (8.45 + 6.14i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 5.11T + 43T^{2} \) |
| 47 | \( 1 + (3.89 + 2.82i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.46 - 4.50i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (5.86 - 4.26i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-4.02 + 12.3i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 10.8T + 67T^{2} \) |
| 71 | \( 1 + (1.31 - 4.04i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (0.335 - 0.243i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.59 - 4.91i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-1.09 + 3.36i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 14.9T + 89T^{2} \) |
| 97 | \( 1 + (-3.72 - 11.4i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.05663980737399751584088337404, −10.68882652634047754694621030258, −10.04925744588593600565072645801, −8.980417031063491473313396298365, −8.046430134599716354685979666361, −7.31519712964926434037816094371, −5.23272561450408664480816576438, −4.96377195707303908578908125614, −3.31699102767595048564678666933, −1.49745843061272042942271829634,
2.09650556352143332783752262514, 3.09677372506085918750248703005, 4.86782922366922594300299520152, 6.09452138175938389886059588982, 7.18838343153766252095665688812, 8.043629495321263226188915106139, 9.138029844092159390930592952474, 10.07603653021967234487671929293, 11.35257864215343848526338256650, 11.66656967504868137673671162888