L(s) = 1 | + (−0.309 + 0.951i)3-s + (1.95 − 1.41i)5-s + (−1.46 − 4.49i)7-s + (−0.809 − 0.587i)9-s + (0.960 − 3.17i)11-s + (4.86 + 3.53i)13-s + (0.745 + 2.29i)15-s + (−0.720 + 0.523i)17-s + (−1.02 + 3.15i)19-s + 4.72·21-s + 0.204·23-s + (0.254 − 0.782i)25-s + (0.809 − 0.587i)27-s + (−2.95 − 9.10i)29-s + (7.37 + 5.36i)31-s + ⋯ |
L(s) = 1 | + (−0.178 + 0.549i)3-s + (0.873 − 0.634i)5-s + (−0.552 − 1.69i)7-s + (−0.269 − 0.195i)9-s + (0.289 − 0.957i)11-s + (1.34 + 0.980i)13-s + (0.192 + 0.592i)15-s + (−0.174 + 0.126i)17-s + (−0.234 + 0.723i)19-s + 1.03·21-s + 0.0427·23-s + (0.0508 − 0.156i)25-s + (0.155 − 0.113i)27-s + (−0.549 − 1.69i)29-s + (1.32 + 0.962i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.834 + 0.551i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.834 + 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26015 - 0.379003i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26015 - 0.379003i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (-0.960 + 3.17i)T \) |
good | 5 | \( 1 + (-1.95 + 1.41i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.46 + 4.49i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.86 - 3.53i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.720 - 0.523i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.02 - 3.15i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 0.204T + 23T^{2} \) |
| 29 | \( 1 + (2.95 + 9.10i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-7.37 - 5.36i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.445 - 1.37i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.09 + 3.36i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 7.79T + 43T^{2} \) |
| 47 | \( 1 + (2.83 - 8.72i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.76 - 2.73i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (0.305 + 0.940i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (5.20 - 3.78i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 6.17T + 67T^{2} \) |
| 71 | \( 1 + (5.50 - 3.99i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.19 - 3.67i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.67 - 2.66i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-8.08 + 5.87i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 0.930T + 89T^{2} \) |
| 97 | \( 1 + (2.36 + 1.71i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.67263445348175787346434254387, −10.78085517671165112252528339677, −10.01025276814548309608982604560, −9.168012433168044713346769691606, −8.166933611088299108696717854361, −6.59468307457270616492348538352, −5.94741203513246548160926754942, −4.40323751386956193417948310426, −3.58966176002755736202406950623, −1.21070720301408581523079005809,
2.02341007596830963999430240751, 3.08455089433770825477294176015, 5.23119739920303061372567060326, 6.14961921388431389755952977069, 6.75721603422762035784350102558, 8.294384149291116767885087141292, 9.178004756243803460011744186038, 10.10839284080270267549274784488, 11.18402160055838755728118437479, 12.15439089072707104730805145637