L(s) = 1 | + (−0.707 − 0.707i)2-s − 1.41i·5-s − 7-s + (−0.707 + 0.707i)8-s + (−1.00 + 1.00i)10-s + (0.707 + 0.707i)11-s − i·13-s + (0.707 + 0.707i)14-s + 1.00·16-s + (−0.707 − 0.707i)17-s − 1.00i·22-s + 1.41·23-s − 1.00·25-s + (−0.707 + 0.707i)26-s + (0.707 + 0.707i)29-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s − 1.41i·5-s − 7-s + (−0.707 + 0.707i)8-s + (−1.00 + 1.00i)10-s + (0.707 + 0.707i)11-s − i·13-s + (0.707 + 0.707i)14-s + 1.00·16-s + (−0.707 − 0.707i)17-s − 1.00i·22-s + 1.41·23-s − 1.00·25-s + (−0.707 + 0.707i)26-s + (0.707 + 0.707i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.560 + 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.560 + 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4766005584\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4766005584\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (-0.707 - 0.707i)T \) |
good | 2 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 5 | \( 1 + 1.41iT - T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + (-1 - i)T + iT^{2} \) |
| 47 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + 1.41T + T^{2} \) |
| 61 | \( 1 + (-1 - i)T + iT^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1 - i)T - iT^{2} \) |
| 79 | \( 1 + (1 + i)T + iT^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92477545210107226978006814185, −10.80943335051301411452046452952, −9.783793726622232454040017595072, −9.174265410441039523624167500803, −8.531119674978704142199750366646, −7.01589466114184285026331117017, −5.67436059506655455693952650781, −4.61048561012098327644991461910, −2.87185700294022398045455462402, −1.08119077352074327392021995283,
2.88385543173440384690559817456, 3.89058076622138814505087558615, 6.29906451532503022481364672532, 6.54547223258153374591826725715, 7.45113317990104694337439076964, 8.788990231680953979677197181154, 9.423474622233132623928764331999, 10.54290514262918161228838721895, 11.40363112763595231829722397234, 12.50041095762135699720648476133