Properties

Label 2-261-261.101-c1-0-24
Degree $2$
Conductor $261$
Sign $-0.946 - 0.322i$
Analytic cond. $2.08409$
Root an. cond. $1.44363$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.931 − 2.13i)2-s + (−0.702 + 1.58i)3-s + (−2.33 − 2.51i)4-s + (−2.63 − 0.396i)5-s + (2.72 + 2.97i)6-s + (−2.74 − 2.54i)7-s + (−3.14 + 1.10i)8-s + (−2.01 − 2.22i)9-s + (−3.30 + 5.25i)10-s + (−0.317 + 0.273i)11-s + (5.62 − 1.92i)12-s + (0.316 − 0.463i)13-s + (−8.00 + 3.49i)14-s + (2.47 − 3.89i)15-s + (−0.0678 + 0.905i)16-s + (2.10 + 2.10i)17-s + ⋯
L(s)  = 1  + (0.658 − 1.51i)2-s + (−0.405 + 0.914i)3-s + (−1.16 − 1.25i)4-s + (−1.17 − 0.177i)5-s + (1.11 + 1.21i)6-s + (−1.03 − 0.963i)7-s + (−1.11 + 0.389i)8-s + (−0.671 − 0.741i)9-s + (−1.04 + 1.66i)10-s + (−0.0957 + 0.0823i)11-s + (1.62 − 0.556i)12-s + (0.0876 − 0.128i)13-s + (−2.13 + 0.933i)14-s + (0.639 − 1.00i)15-s + (−0.0169 + 0.226i)16-s + (0.510 + 0.510i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.946 - 0.322i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.946 - 0.322i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $-0.946 - 0.322i$
Analytic conductor: \(2.08409\)
Root analytic conductor: \(1.44363\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{261} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 261,\ (\ :1/2),\ -0.946 - 0.322i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.108577 + 0.654373i\)
\(L(\frac12)\) \(\approx\) \(0.108577 + 0.654373i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.702 - 1.58i)T \)
29 \( 1 + (4.54 - 2.89i)T \)
good2 \( 1 + (-0.931 + 2.13i)T + (-1.36 - 1.46i)T^{2} \)
5 \( 1 + (2.63 + 0.396i)T + (4.77 + 1.47i)T^{2} \)
7 \( 1 + (2.74 + 2.54i)T + (0.523 + 6.98i)T^{2} \)
11 \( 1 + (0.317 - 0.273i)T + (1.63 - 10.8i)T^{2} \)
13 \( 1 + (-0.316 + 0.463i)T + (-4.74 - 12.1i)T^{2} \)
17 \( 1 + (-2.10 - 2.10i)T + 17iT^{2} \)
19 \( 1 + (3.27 + 2.05i)T + (8.24 + 17.1i)T^{2} \)
23 \( 1 + (-0.386 - 0.151i)T + (16.8 + 15.6i)T^{2} \)
31 \( 1 + (-8.11 + 5.98i)T + (9.13 - 29.6i)T^{2} \)
37 \( 1 + (0.872 + 2.49i)T + (-28.9 + 23.0i)T^{2} \)
41 \( 1 + (-8.79 - 2.35i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (-6.97 + 9.45i)T + (-12.6 - 41.0i)T^{2} \)
47 \( 1 + (-3.52 - 4.09i)T + (-7.00 + 46.4i)T^{2} \)
53 \( 1 + (10.7 + 8.53i)T + (11.7 + 51.6i)T^{2} \)
59 \( 1 + (4.46 - 2.57i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (13.3 - 0.498i)T + (60.8 - 4.55i)T^{2} \)
67 \( 1 + (2.39 - 0.179i)T + (66.2 - 9.98i)T^{2} \)
71 \( 1 + (7.83 - 3.77i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (0.882 - 7.83i)T + (-71.1 - 16.2i)T^{2} \)
79 \( 1 + (-1.19 + 6.29i)T + (-73.5 - 28.8i)T^{2} \)
83 \( 1 + (-2.83 + 9.18i)T + (-68.5 - 46.7i)T^{2} \)
89 \( 1 + (-3.90 + 0.439i)T + (86.7 - 19.8i)T^{2} \)
97 \( 1 + (-2.11 - 3.99i)T + (-54.6 + 80.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35295248250585998544743962437, −10.72059688651708062665447368581, −10.02473612370972472141027761591, −9.082888488719127099561015217756, −7.55524019341098121118082908606, −6.00725751922526324696062725342, −4.48381331478217180868784626174, −3.96901395819251044884403170707, −3.08192736482299470200928147044, −0.43484746904673498366057128971, 3.06226040543416437482909488915, 4.54364912158604801411621146738, 5.87917214379845188493501460922, 6.39489818888849580049966599527, 7.48268124929981933518501253273, 8.055107805780699948304251527925, 9.138973290785703953932004201651, 10.90256674466380061330815423029, 12.15477858828143007506739075333, 12.46479714681660300843903165303

Graph of the $Z$-function along the critical line