Properties

Label 2-261-1.1-c1-0-5
Degree $2$
Conductor $261$
Sign $1$
Analytic cond. $2.08409$
Root an. cond. $1.44363$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.93·2-s + 1.74·4-s − 0.508·5-s + 3.68·7-s − 0.491·8-s − 0.983·10-s + 0.318·11-s + 4.18·13-s + 7.12·14-s − 4.44·16-s − 3.17·17-s − 5.87·19-s − 0.887·20-s + 0.616·22-s − 2.50·23-s − 4.74·25-s + 8.10·26-s + 6.42·28-s − 29-s + 2.50·31-s − 7.61·32-s − 6.14·34-s − 1.87·35-s + 7.87·37-s − 11.3·38-s + 0.249·40-s − 8.72·41-s + ⋯
L(s)  = 1  + 1.36·2-s + 0.872·4-s − 0.227·5-s + 1.39·7-s − 0.173·8-s − 0.311·10-s + 0.0960·11-s + 1.16·13-s + 1.90·14-s − 1.11·16-s − 0.769·17-s − 1.34·19-s − 0.198·20-s + 0.131·22-s − 0.522·23-s − 0.948·25-s + 1.59·26-s + 1.21·28-s − 0.185·29-s + 0.450·31-s − 1.34·32-s − 1.05·34-s − 0.316·35-s + 1.29·37-s − 1.84·38-s + 0.0395·40-s − 1.36·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(2.08409\)
Root analytic conductor: \(1.44363\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 261,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.466756777\)
\(L(\frac12)\) \(\approx\) \(2.466756777\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 + T \)
good2 \( 1 - 1.93T + 2T^{2} \)
5 \( 1 + 0.508T + 5T^{2} \)
7 \( 1 - 3.68T + 7T^{2} \)
11 \( 1 - 0.318T + 11T^{2} \)
13 \( 1 - 4.18T + 13T^{2} \)
17 \( 1 + 3.17T + 17T^{2} \)
19 \( 1 + 5.87T + 19T^{2} \)
23 \( 1 + 2.50T + 23T^{2} \)
31 \( 1 - 2.50T + 31T^{2} \)
37 \( 1 - 7.87T + 37T^{2} \)
41 \( 1 + 8.72T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 - 11.0T + 47T^{2} \)
53 \( 1 - 8.24T + 53T^{2} \)
59 \( 1 - 11.3T + 59T^{2} \)
61 \( 1 + 3.87T + 61T^{2} \)
67 \( 1 - 7.04T + 67T^{2} \)
71 \( 1 + 6.24T + 71T^{2} \)
73 \( 1 + 7.87T + 73T^{2} \)
79 \( 1 + 4.85T + 79T^{2} \)
83 \( 1 - 8.37T + 83T^{2} \)
89 \( 1 - 15.9T + 89T^{2} \)
97 \( 1 - 11.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.89379906390817673898495680908, −11.45717177468320183508910298287, −10.50317658005145421373983048345, −8.827804660270956228612202293003, −8.110151513408090971118370390688, −6.64955494139607739085014912079, −5.69070465123847630004924937603, −4.54613745325072059167389947720, −3.85551656049954225721533006205, −2.09940579716822489259011887500, 2.09940579716822489259011887500, 3.85551656049954225721533006205, 4.54613745325072059167389947720, 5.69070465123847630004924937603, 6.64955494139607739085014912079, 8.110151513408090971118370390688, 8.827804660270956228612202293003, 10.50317658005145421373983048345, 11.45717177468320183508910298287, 11.89379906390817673898495680908

Graph of the $Z$-function along the critical line