Properties

Label 2-261-1.1-c1-0-3
Degree $2$
Conductor $261$
Sign $1$
Analytic cond. $2.08409$
Root an. cond. $1.44363$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.47·2-s + 4.11·4-s + 4.22·5-s + 1.64·7-s − 5.22·8-s − 10.4·10-s + 2.35·11-s − 2.58·13-s − 4.06·14-s + 4.70·16-s − 5.87·17-s + 2.94·19-s + 17.4·20-s − 5.83·22-s + 2.22·23-s + 12.8·25-s + 6.39·26-s + 6.75·28-s − 29-s − 2.22·31-s − 1.16·32-s + 14.5·34-s + 6.94·35-s − 0.945·37-s − 7.28·38-s − 22.1·40-s − 0.568·41-s + ⋯
L(s)  = 1  − 1.74·2-s + 2.05·4-s + 1.89·5-s + 0.620·7-s − 1.84·8-s − 3.30·10-s + 0.710·11-s − 0.717·13-s − 1.08·14-s + 1.17·16-s − 1.42·17-s + 0.675·19-s + 3.89·20-s − 1.24·22-s + 0.464·23-s + 2.57·25-s + 1.25·26-s + 1.27·28-s − 0.185·29-s − 0.400·31-s − 0.206·32-s + 2.49·34-s + 1.17·35-s − 0.155·37-s − 1.18·38-s − 3.49·40-s − 0.0887·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(2.08409\)
Root analytic conductor: \(1.44363\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 261,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8276697708\)
\(L(\frac12)\) \(\approx\) \(0.8276697708\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 2.47T + 2T^{2} \)
5 \( 1 - 4.22T + 5T^{2} \)
7 \( 1 - 1.64T + 7T^{2} \)
11 \( 1 - 2.35T + 11T^{2} \)
13 \( 1 + 2.58T + 13T^{2} \)
17 \( 1 + 5.87T + 17T^{2} \)
19 \( 1 - 2.94T + 19T^{2} \)
23 \( 1 - 2.22T + 23T^{2} \)
31 \( 1 + 2.22T + 31T^{2} \)
37 \( 1 + 0.945T + 37T^{2} \)
41 \( 1 + 0.568T + 41T^{2} \)
43 \( 1 + 2.56T + 43T^{2} \)
47 \( 1 - 4.92T + 47T^{2} \)
53 \( 1 + 14.1T + 53T^{2} \)
59 \( 1 - 7.28T + 59T^{2} \)
61 \( 1 - 4.94T + 61T^{2} \)
67 \( 1 - 0.926T + 67T^{2} \)
71 \( 1 - 16.1T + 71T^{2} \)
73 \( 1 - 0.945T + 73T^{2} \)
79 \( 1 + 5.51T + 79T^{2} \)
83 \( 1 + 5.17T + 83T^{2} \)
89 \( 1 + 8.47T + 89T^{2} \)
97 \( 1 + 1.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.46124877115121423737375890435, −10.74080013280750863418459716338, −9.735640367801854909548350458050, −9.309956059886718691277450343830, −8.464601111909517501056914192685, −7.11114218892230118223003304842, −6.37470607736323218614690014798, −5.07477201768043971528596570792, −2.43102823933071948428892909782, −1.49442799016086090491750613038, 1.49442799016086090491750613038, 2.43102823933071948428892909782, 5.07477201768043971528596570792, 6.37470607736323218614690014798, 7.11114218892230118223003304842, 8.464601111909517501056914192685, 9.309956059886718691277450343830, 9.735640367801854909548350458050, 10.74080013280750863418459716338, 11.46124877115121423737375890435

Graph of the $Z$-function along the critical line