Properties

Label 2-261-1.1-c1-0-1
Degree $2$
Conductor $261$
Sign $1$
Analytic cond. $2.08409$
Root an. cond. $1.44363$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.618·2-s − 1.61·4-s + 2·5-s − 2.23·7-s + 2.23·8-s − 1.23·10-s + 6.23·11-s + 3.47·13-s + 1.38·14-s + 1.85·16-s − 3.47·17-s − 3.23·20-s − 3.85·22-s + 8.47·23-s − 25-s − 2.14·26-s + 3.61·28-s + 29-s + 8.94·31-s − 5.61·32-s + 2.14·34-s − 4.47·35-s − 4·37-s + 4.47·40-s − 2·41-s − 8.47·43-s − 10.0·44-s + ⋯
L(s)  = 1  − 0.437·2-s − 0.809·4-s + 0.894·5-s − 0.845·7-s + 0.790·8-s − 0.390·10-s + 1.88·11-s + 0.962·13-s + 0.369·14-s + 0.463·16-s − 0.842·17-s − 0.723·20-s − 0.821·22-s + 1.76·23-s − 0.200·25-s − 0.420·26-s + 0.683·28-s + 0.185·29-s + 1.60·31-s − 0.993·32-s + 0.368·34-s − 0.755·35-s − 0.657·37-s + 0.707·40-s − 0.312·41-s − 1.29·43-s − 1.52·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(2.08409\)
Root analytic conductor: \(1.44363\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 261,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.012987634\)
\(L(\frac12)\) \(\approx\) \(1.012987634\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 0.618T + 2T^{2} \)
5 \( 1 - 2T + 5T^{2} \)
7 \( 1 + 2.23T + 7T^{2} \)
11 \( 1 - 6.23T + 11T^{2} \)
13 \( 1 - 3.47T + 13T^{2} \)
17 \( 1 + 3.47T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 8.47T + 23T^{2} \)
31 \( 1 - 8.94T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 8.47T + 43T^{2} \)
47 \( 1 - 4.70T + 47T^{2} \)
53 \( 1 + 8T + 53T^{2} \)
59 \( 1 - 3.52T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 - 3.76T + 67T^{2} \)
71 \( 1 + 8.94T + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 - 3.52T + 79T^{2} \)
83 \( 1 + 0.944T + 83T^{2} \)
89 \( 1 - 12.4T + 89T^{2} \)
97 \( 1 - 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.99201650471991214370459381116, −10.82245964288918460162401457565, −9.779646039384926160635851585489, −9.167370533484938897591376184727, −8.549795346932713783010486547141, −6.81486362064612028474757741612, −6.15233287087057854954056495559, −4.66863667240383611876753475765, −3.44210760418623279968082946856, −1.32964232075500064338586509833, 1.32964232075500064338586509833, 3.44210760418623279968082946856, 4.66863667240383611876753475765, 6.15233287087057854954056495559, 6.81486362064612028474757741612, 8.549795346932713783010486547141, 9.167370533484938897591376184727, 9.779646039384926160635851585489, 10.82245964288918460162401457565, 11.99201650471991214370459381116

Graph of the $Z$-function along the critical line