L(s) = 1 | + (4 − 6.92i)2-s + (35.5 − 61.6i)3-s + (−31.9 − 55.4i)4-s + 523.·5-s + (−284. − 492. i)6-s + (208. + 360. i)7-s − 511.·8-s + (−1.43e3 − 2.49e3i)9-s + (2.09e3 − 3.62e3i)10-s + (−1.71e3 + 2.96e3i)11-s − 4.55e3·12-s + (−6.74e3 + 4.15e3i)13-s + 3.33e3·14-s + (1.86e4 − 3.22e4i)15-s + (−2.04e3 + 3.54e3i)16-s + (3.26e3 + 5.66e3i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.760 − 1.31i)3-s + (−0.249 − 0.433i)4-s + 1.87·5-s + (−0.537 − 0.931i)6-s + (0.229 + 0.397i)7-s − 0.353·8-s + (−0.657 − 1.13i)9-s + (0.662 − 1.14i)10-s + (−0.387 + 0.671i)11-s − 0.760·12-s + (−0.851 + 0.525i)13-s + 0.324·14-s + (1.42 − 2.46i)15-s + (−0.125 + 0.216i)16-s + (0.161 + 0.279i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(−0.236+0.971i)Λ(8−s)
Λ(s)=(=(26s/2ΓC(s+7/2)L(s)(−0.236+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
−0.236+0.971i
|
Analytic conductor: |
8.12201 |
Root analytic conductor: |
2.84991 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :7/2), −0.236+0.971i)
|
Particular Values
L(4) |
≈ |
1.86555−2.37452i |
L(21) |
≈ |
1.86555−2.37452i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4+6.92i)T |
| 13 | 1+(6.74e3−4.15e3i)T |
good | 3 | 1+(−35.5+61.6i)T+(−1.09e3−1.89e3i)T2 |
| 5 | 1−523.T+7.81e4T2 |
| 7 | 1+(−208.−360.i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1+(1.71e3−2.96e3i)T+(−9.74e6−1.68e7i)T2 |
| 17 | 1+(−3.26e3−5.66e3i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(1.39e4+2.42e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1+(5.30e4−9.19e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(3.42e4−5.93e4i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1−5.15e4T+2.75e10T2 |
| 37 | 1+(2.40e4−4.16e4i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1+(−3.01e5+5.21e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(4.58e5+7.93e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+3.26e5T+5.06e11T2 |
| 53 | 1−9.34e5T+1.17e12T2 |
| 59 | 1+(5.87e5+1.01e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(−1.44e6−2.50e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(1.59e5−2.75e5i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+(6.41e5+1.11e6i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1+1.67e6T+1.10e13T2 |
| 79 | 1+8.09e6T+1.92e13T2 |
| 83 | 1−5.57e6T+2.71e13T2 |
| 89 | 1+(3.93e6−6.82e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+(−3.40e6−5.89e6i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.84676666327333063445700580191, −13.83470799088299567448309680381, −13.18770264774338598207825048793, −12.12843413966603210069818228028, −10.08497043803827190675439014939, −8.942488827783357871327831757949, −7.00867061791101382846931839147, −5.46484886820953479772836985539, −2.38291324254866173764632379237, −1.74495065676387056838552167449,
2.71018029187727279853891285228, 4.67975183157922891483601731651, 6.01761739580206786286193250518, 8.311122336715776955996242379328, 9.695427781029161976108185641649, 10.40711909285565494612530268500, 13.01596632490984819616057486234, 14.21201292946650620119916019944, 14.65132698796591748108293531572, 16.25029011579572675279617308888