L(s) = 1 | + (4 − 6.92i)2-s + (−39.6 + 68.6i)3-s + (−31.9 − 55.4i)4-s + 132.·5-s + (317. + 549. i)6-s + (−754. − 1.30e3i)7-s − 511.·8-s + (−2.04e3 − 3.54e3i)9-s + (530. − 918. i)10-s + (1.46e3 − 2.53e3i)11-s + 5.07e3·12-s + (−7.91e3 − 240. i)13-s − 1.20e4·14-s + (−5.25e3 + 9.10e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (1.08e4 + 1.88e4i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.847 + 1.46i)3-s + (−0.249 − 0.433i)4-s + 0.474·5-s + (0.599 + 1.03i)6-s + (−0.831 − 1.43i)7-s − 0.353·8-s + (−0.936 − 1.62i)9-s + (0.167 − 0.290i)10-s + (0.331 − 0.574i)11-s + 0.847·12-s + (−0.999 − 0.0303i)13-s − 1.17·14-s + (−0.402 + 0.696i)15-s + (−0.125 + 0.216i)16-s + (0.536 + 0.929i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(−0.732+0.680i)Λ(8−s)
Λ(s)=(=(26s/2ΓC(s+7/2)L(s)(−0.732+0.680i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
−0.732+0.680i
|
Analytic conductor: |
8.12201 |
Root analytic conductor: |
2.84991 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :7/2), −0.732+0.680i)
|
Particular Values
L(4) |
≈ |
0.218097−0.555195i |
L(21) |
≈ |
0.218097−0.555195i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4+6.92i)T |
| 13 | 1+(7.91e3+240.i)T |
good | 3 | 1+(39.6−68.6i)T+(−1.09e3−1.89e3i)T2 |
| 5 | 1−132.T+7.81e4T2 |
| 7 | 1+(754.+1.30e3i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1+(−1.46e3+2.53e3i)T+(−9.74e6−1.68e7i)T2 |
| 17 | 1+(−1.08e4−1.88e4i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(2.67e4+4.63e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1+(−1.42e4+2.46e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(7.63e4−1.32e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1−8.33e4T+2.75e10T2 |
| 37 | 1+(5.62e4−9.73e4i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1+(5.50e4−9.53e4i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(5.29e4+9.17e4i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1−4.13e5T+5.06e11T2 |
| 53 | 1+8.89e5T+1.17e12T2 |
| 59 | 1+(1.20e6+2.08e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(1.19e6+2.06e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(−1.84e5+3.20e5i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+(−1.59e6−2.76e6i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1−5.84e6T+1.10e13T2 |
| 79 | 1−1.07e6T+1.92e13T2 |
| 83 | 1−6.47e5T+2.71e13T2 |
| 89 | 1+(−5.81e6+1.00e7i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+(3.11e4+5.40e4i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.46323042147239332232149545198, −14.14185966469543196943693500860, −12.76343221090491441542356669068, −11.08982565283734636784068412085, −10.32530937664371271082009950382, −9.428424844502128801272979713681, −6.41202421035417755654813853444, −4.79274759649410613750469996864, −3.55158826630784322412726203703, −0.28637075526289471709435495819,
2.20771799778827641035146128298, 5.53261499213347158230359298570, 6.34734425840558225407562277420, 7.68362353717483614009415953166, 9.552428130896061108292630343792, 12.07615204928541046212082866356, 12.35069428524569218379174926674, 13.63563467263103993109578490318, 15.06492233485527015483765129699, 16.59742533803894260550626105551