Properties

Label 2-26-13.9-c7-0-4
Degree $2$
Conductor $26$
Sign $-0.732 + 0.680i$
Analytic cond. $8.12201$
Root an. cond. $2.84991$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 − 6.92i)2-s + (−39.6 + 68.6i)3-s + (−31.9 − 55.4i)4-s + 132.·5-s + (317. + 549. i)6-s + (−754. − 1.30e3i)7-s − 511.·8-s + (−2.04e3 − 3.54e3i)9-s + (530. − 918. i)10-s + (1.46e3 − 2.53e3i)11-s + 5.07e3·12-s + (−7.91e3 − 240. i)13-s − 1.20e4·14-s + (−5.25e3 + 9.10e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (1.08e4 + 1.88e4i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.847 + 1.46i)3-s + (−0.249 − 0.433i)4-s + 0.474·5-s + (0.599 + 1.03i)6-s + (−0.831 − 1.43i)7-s − 0.353·8-s + (−0.936 − 1.62i)9-s + (0.167 − 0.290i)10-s + (0.331 − 0.574i)11-s + 0.847·12-s + (−0.999 − 0.0303i)13-s − 1.17·14-s + (−0.402 + 0.696i)15-s + (−0.125 + 0.216i)16-s + (0.536 + 0.929i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.732 + 0.680i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.732 + 0.680i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $-0.732 + 0.680i$
Analytic conductor: \(8.12201\)
Root analytic conductor: \(2.84991\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{26} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :7/2),\ -0.732 + 0.680i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.218097 - 0.555195i\)
\(L(\frac12)\) \(\approx\) \(0.218097 - 0.555195i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 + 6.92i)T \)
13 \( 1 + (7.91e3 + 240. i)T \)
good3 \( 1 + (39.6 - 68.6i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 - 132.T + 7.81e4T^{2} \)
7 \( 1 + (754. + 1.30e3i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (-1.46e3 + 2.53e3i)T + (-9.74e6 - 1.68e7i)T^{2} \)
17 \( 1 + (-1.08e4 - 1.88e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (2.67e4 + 4.63e4i)T + (-4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (-1.42e4 + 2.46e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (7.63e4 - 1.32e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 - 8.33e4T + 2.75e10T^{2} \)
37 \( 1 + (5.62e4 - 9.73e4i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + (5.50e4 - 9.53e4i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (5.29e4 + 9.17e4i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 - 4.13e5T + 5.06e11T^{2} \)
53 \( 1 + 8.89e5T + 1.17e12T^{2} \)
59 \( 1 + (1.20e6 + 2.08e6i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (1.19e6 + 2.06e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (-1.84e5 + 3.20e5i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (-1.59e6 - 2.76e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 - 5.84e6T + 1.10e13T^{2} \)
79 \( 1 - 1.07e6T + 1.92e13T^{2} \)
83 \( 1 - 6.47e5T + 2.71e13T^{2} \)
89 \( 1 + (-5.81e6 + 1.00e7i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (3.11e4 + 5.40e4i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.46323042147239332232149545198, −14.14185966469543196943693500860, −12.76343221090491441542356669068, −11.08982565283734636784068412085, −10.32530937664371271082009950382, −9.428424844502128801272979713681, −6.41202421035417755654813853444, −4.79274759649410613750469996864, −3.55158826630784322412726203703, −0.28637075526289471709435495819, 2.20771799778827641035146128298, 5.53261499213347158230359298570, 6.34734425840558225407562277420, 7.68362353717483614009415953166, 9.552428130896061108292630343792, 12.07615204928541046212082866356, 12.35069428524569218379174926674, 13.63563467263103993109578490318, 15.06492233485527015483765129699, 16.59742533803894260550626105551

Graph of the $Z$-function along the critical line