Properties

Label 2-26-13.3-c7-0-6
Degree $2$
Conductor $26$
Sign $0.471 + 0.881i$
Analytic cond. $8.12201$
Root an. cond. $2.84991$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 + 6.92i)2-s + (−15.9 − 27.6i)3-s + (−31.9 + 55.4i)4-s − 54.4·5-s + (127. − 220. i)6-s + (556. − 963. i)7-s − 511.·8-s + (585. − 1.01e3i)9-s + (−217. − 377. i)10-s + (−3.56e3 − 6.17e3i)11-s + 2.03e3·12-s + (7.56e3 + 2.34e3i)13-s + 8.90e3·14-s + (867. + 1.50e3i)15-s + (−2.04e3 − 3.54e3i)16-s + (1.02e4 − 1.77e4i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.340 − 0.590i)3-s + (−0.249 + 0.433i)4-s − 0.194·5-s + (0.240 − 0.417i)6-s + (0.613 − 1.06i)7-s − 0.353·8-s + (0.267 − 0.463i)9-s + (−0.0688 − 0.119i)10-s + (−0.807 − 1.39i)11-s + 0.340·12-s + (0.955 + 0.296i)13-s + 0.867·14-s + (0.0663 + 0.114i)15-s + (−0.125 − 0.216i)16-s + (0.506 − 0.876i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 + 0.881i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.471 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $0.471 + 0.881i$
Analytic conductor: \(8.12201\)
Root analytic conductor: \(2.84991\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{26} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :7/2),\ 0.471 + 0.881i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.32876 - 0.796255i\)
\(L(\frac12)\) \(\approx\) \(1.32876 - 0.796255i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 - 6.92i)T \)
13 \( 1 + (-7.56e3 - 2.34e3i)T \)
good3 \( 1 + (15.9 + 27.6i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + 54.4T + 7.81e4T^{2} \)
7 \( 1 + (-556. + 963. i)T + (-4.11e5 - 7.13e5i)T^{2} \)
11 \( 1 + (3.56e3 + 6.17e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
17 \( 1 + (-1.02e4 + 1.77e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (1.40e4 - 2.43e4i)T + (-4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (1.69e4 + 2.93e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (-8.77e4 - 1.51e5i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 - 1.56e4T + 2.75e10T^{2} \)
37 \( 1 + (998. + 1.72e3i)T + (-4.74e10 + 8.22e10i)T^{2} \)
41 \( 1 + (1.11e5 + 1.93e5i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (-2.68e5 + 4.65e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 - 5.42e5T + 5.06e11T^{2} \)
53 \( 1 - 1.85e6T + 1.17e12T^{2} \)
59 \( 1 + (-6.65e5 + 1.15e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (1.43e6 - 2.48e6i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-1.41e6 - 2.45e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (-8.00e5 + 1.38e6i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 - 1.39e6T + 1.10e13T^{2} \)
79 \( 1 + 2.33e6T + 1.92e13T^{2} \)
83 \( 1 - 2.37e6T + 2.71e13T^{2} \)
89 \( 1 + (3.52e6 + 6.10e6i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 + (4.25e6 - 7.37e6i)T + (-4.03e13 - 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.84032261032378979759255502373, −14.17034724646112985847384806431, −13.41791173636955681392993540769, −11.96292496787501535742903930285, −10.63579854752849494014744812124, −8.412601132366499250411333218446, −7.20767196296221803248795093025, −5.78443546173782474486460611623, −3.83752993980241522668129601175, −0.77624088404093377737204112699, 2.10824556057425073623084577750, 4.36270168228763664302675118250, 5.61392653010655724868642819762, 8.082845610661017241180821525442, 9.832907861596866597401421165562, 10.94936682865697185767004653392, 12.14591695924005880568788672485, 13.35578815406339104687970231013, 15.17594893357944776738699853944, 15.61343049491279625869924254534

Graph of the $Z$-function along the critical line