L(s) = 1 | + 2·2-s − 3-s + 4·4-s + 17·5-s − 2·6-s − 35·7-s + 8·8-s − 26·9-s + 34·10-s + 2·11-s − 4·12-s + 13·13-s − 70·14-s − 17·15-s + 16·16-s − 19·17-s − 52·18-s + 94·19-s + 68·20-s + 35·21-s + 4·22-s − 72·23-s − 8·24-s + 164·25-s + 26·26-s + 53·27-s − 140·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.192·3-s + 1/2·4-s + 1.52·5-s − 0.136·6-s − 1.88·7-s + 0.353·8-s − 0.962·9-s + 1.07·10-s + 0.0548·11-s − 0.0962·12-s + 0.277·13-s − 1.33·14-s − 0.292·15-s + 1/4·16-s − 0.271·17-s − 0.680·18-s + 1.13·19-s + 0.760·20-s + 0.363·21-s + 0.0387·22-s − 0.652·23-s − 0.0680·24-s + 1.31·25-s + 0.196·26-s + 0.377·27-s − 0.944·28-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(26s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.609812354 |
L(21) |
≈ |
1.609812354 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−pT |
| 13 | 1−pT |
good | 3 | 1+T+p3T2 |
| 5 | 1−17T+p3T2 |
| 7 | 1+5pT+p3T2 |
| 11 | 1−2T+p3T2 |
| 17 | 1+19T+p3T2 |
| 19 | 1−94T+p3T2 |
| 23 | 1+72T+p3T2 |
| 29 | 1−246T+p3T2 |
| 31 | 1+100T+p3T2 |
| 37 | 1+11T+p3T2 |
| 41 | 1+280T+p3T2 |
| 43 | 1−241T+p3T2 |
| 47 | 1−137T+p3T2 |
| 53 | 1+232T+p3T2 |
| 59 | 1+386T+p3T2 |
| 61 | 1−64T+p3T2 |
| 67 | 1+10pT+p3T2 |
| 71 | 1−55T+p3T2 |
| 73 | 1+838T+p3T2 |
| 79 | 1−1016T+p3T2 |
| 83 | 1−420T+p3T2 |
| 89 | 1+934T+p3T2 |
| 97 | 1+1154T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.80437786070971894766043817922, −15.85286329662653664585933001688, −14.05562219357208349848035310802, −13.40994395178736909586100221211, −12.19007633631656607136146195801, −10.35868729698139241101929943743, −9.261113333992029619217116508410, −6.52009248057915953419005493342, −5.68975293420522781236146597816, −2.95389794381125198681312522075,
2.95389794381125198681312522075, 5.68975293420522781236146597816, 6.52009248057915953419005493342, 9.261113333992029619217116508410, 10.35868729698139241101929943743, 12.19007633631656607136146195801, 13.40994395178736909586100221211, 14.05562219357208349848035310802, 15.85286329662653664585933001688, 16.80437786070971894766043817922