Properties

Label 2-26-1.1-c3-0-1
Degree $2$
Conductor $26$
Sign $1$
Analytic cond. $1.53404$
Root an. cond. $1.23856$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 4·4-s + 17·5-s − 2·6-s − 35·7-s + 8·8-s − 26·9-s + 34·10-s + 2·11-s − 4·12-s + 13·13-s − 70·14-s − 17·15-s + 16·16-s − 19·17-s − 52·18-s + 94·19-s + 68·20-s + 35·21-s + 4·22-s − 72·23-s − 8·24-s + 164·25-s + 26·26-s + 53·27-s − 140·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.192·3-s + 1/2·4-s + 1.52·5-s − 0.136·6-s − 1.88·7-s + 0.353·8-s − 0.962·9-s + 1.07·10-s + 0.0548·11-s − 0.0962·12-s + 0.277·13-s − 1.33·14-s − 0.292·15-s + 1/4·16-s − 0.271·17-s − 0.680·18-s + 1.13·19-s + 0.760·20-s + 0.363·21-s + 0.0387·22-s − 0.652·23-s − 0.0680·24-s + 1.31·25-s + 0.196·26-s + 0.377·27-s − 0.944·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $1$
Analytic conductor: \(1.53404\)
Root analytic conductor: \(1.23856\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.609812354\)
\(L(\frac12)\) \(\approx\) \(1.609812354\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
13 \( 1 - p T \)
good3 \( 1 + T + p^{3} T^{2} \)
5 \( 1 - 17 T + p^{3} T^{2} \)
7 \( 1 + 5 p T + p^{3} T^{2} \)
11 \( 1 - 2 T + p^{3} T^{2} \)
17 \( 1 + 19 T + p^{3} T^{2} \)
19 \( 1 - 94 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 - 246 T + p^{3} T^{2} \)
31 \( 1 + 100 T + p^{3} T^{2} \)
37 \( 1 + 11 T + p^{3} T^{2} \)
41 \( 1 + 280 T + p^{3} T^{2} \)
43 \( 1 - 241 T + p^{3} T^{2} \)
47 \( 1 - 137 T + p^{3} T^{2} \)
53 \( 1 + 232 T + p^{3} T^{2} \)
59 \( 1 + 386 T + p^{3} T^{2} \)
61 \( 1 - 64 T + p^{3} T^{2} \)
67 \( 1 + 10 p T + p^{3} T^{2} \)
71 \( 1 - 55 T + p^{3} T^{2} \)
73 \( 1 + 838 T + p^{3} T^{2} \)
79 \( 1 - 1016 T + p^{3} T^{2} \)
83 \( 1 - 420 T + p^{3} T^{2} \)
89 \( 1 + 934 T + p^{3} T^{2} \)
97 \( 1 + 1154 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.80437786070971894766043817922, −15.85286329662653664585933001688, −14.05562219357208349848035310802, −13.40994395178736909586100221211, −12.19007633631656607136146195801, −10.35868729698139241101929943743, −9.261113333992029619217116508410, −6.52009248057915953419005493342, −5.68975293420522781236146597816, −2.95389794381125198681312522075, 2.95389794381125198681312522075, 5.68975293420522781236146597816, 6.52009248057915953419005493342, 9.261113333992029619217116508410, 10.35868729698139241101929943743, 12.19007633631656607136146195801, 13.40994395178736909586100221211, 14.05562219357208349848035310802, 15.85286329662653664585933001688, 16.80437786070971894766043817922

Graph of the $Z$-function along the critical line