| L(s) = 1 | + (0.448 + 0.258i)5-s + (0.866 − 1.5i)13-s − 1.93i·17-s + (−0.366 − 0.633i)25-s + (−1.67 + 0.965i)29-s + 37-s + (1.22 + 0.707i)41-s + (0.5 − 0.866i)49-s + 1.41i·53-s + (0.5 + 0.866i)61-s + (0.776 − 0.448i)65-s + 1.73·73-s + (0.499 − 0.866i)85-s − 0.517i·89-s + (−1.22 + 0.707i)101-s + ⋯ |
| L(s) = 1 | + (0.448 + 0.258i)5-s + (0.866 − 1.5i)13-s − 1.93i·17-s + (−0.366 − 0.633i)25-s + (−1.67 + 0.965i)29-s + 37-s + (1.22 + 0.707i)41-s + (0.5 − 0.866i)49-s + 1.41i·53-s + (0.5 + 0.866i)61-s + (0.776 − 0.448i)65-s + 1.73·73-s + (0.499 − 0.866i)85-s − 0.517i·89-s + (−1.22 + 0.707i)101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 + 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 + 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.323275672\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.323275672\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-0.448 - 0.258i)T + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + 1.93iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (1.67 - 0.965i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.73T + T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + 0.517iT - T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.173535575881785897786903660623, −8.123666949418544241499554436077, −7.53098470584159558638377819745, −6.70733588585617104384980264450, −5.74709627100314517748282562868, −5.32655239942626429691933872333, −4.17717069620946883856514485815, −3.14410155713432365767001056232, −2.43771726693507515393862933515, −0.948367824448422089836272258093,
1.50508481208197083349854911807, 2.20240455667566436624183582313, 3.84211248126878035571129925807, 4.07653774983555271886413719405, 5.41995431055724860221592878372, 6.06726830731828025646944454993, 6.67734404244456466002034529203, 7.74595891764707767042332828669, 8.387700045909132893324434185972, 9.330984800832234277718495984077