| L(s) = 1 | + (−0.448 + 0.258i)5-s + (0.866 + 1.5i)13-s − 1.93i·17-s + (−0.366 + 0.633i)25-s + (1.67 + 0.965i)29-s + 37-s + (−1.22 + 0.707i)41-s + (0.5 + 0.866i)49-s + 1.41i·53-s + (0.5 − 0.866i)61-s + (−0.776 − 0.448i)65-s + 1.73·73-s + (0.499 + 0.866i)85-s − 0.517i·89-s + (1.22 + 0.707i)101-s + ⋯ |
| L(s) = 1 | + (−0.448 + 0.258i)5-s + (0.866 + 1.5i)13-s − 1.93i·17-s + (−0.366 + 0.633i)25-s + (1.67 + 0.965i)29-s + 37-s + (−1.22 + 0.707i)41-s + (0.5 + 0.866i)49-s + 1.41i·53-s + (0.5 − 0.866i)61-s + (−0.776 − 0.448i)65-s + 1.73·73-s + (0.499 + 0.866i)85-s − 0.517i·89-s + (1.22 + 0.707i)101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 - 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.819 - 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.143280448\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.143280448\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.448 - 0.258i)T + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + 1.93iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.67 - 0.965i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.73T + T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + 0.517iT - T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.178551276408931133396533754673, −8.432026215038423314745315404543, −7.52269585422128940768834145896, −6.86236465547285142220376422458, −6.26266300249281401256014736983, −5.07694957747491610508312858302, −4.42710812412909697045054044655, −3.45775083816836195572934637936, −2.58662797013332952472413555942, −1.24501963630514387447146940503,
0.899449167254123472704667751113, 2.27141667596741325084233854029, 3.48311087840086698320941543668, 4.05436710391505562926984871748, 5.10628155876947186140498831197, 5.99138609659569571424169917803, 6.51917410012476296747340190804, 7.74002305394932938022479844726, 8.372990089583820306271713546896, 8.556827471294025860295576868293