L(s) = 1 | + (−3.23 − 1.86i)5-s + (−0.366 − 0.633i)7-s + (−4.09 + 2.36i)11-s + (−2.13 − 1.23i)13-s − 3.73·17-s + 3.26i·19-s + (4.36 − 7.56i)23-s + (4.46 + 7.73i)25-s + (−4.5 + 2.59i)29-s + (1 − 1.73i)31-s + 2.73i·35-s + 5i·37-s + (−2.26 + 3.92i)41-s + (8.36 − 4.83i)43-s + (1.73 + 3i)47-s + ⋯ |
L(s) = 1 | + (−1.44 − 0.834i)5-s + (−0.138 − 0.239i)7-s + (−1.23 + 0.713i)11-s + (−0.591 − 0.341i)13-s − 0.905·17-s + 0.749i·19-s + (0.910 − 1.57i)23-s + (0.892 + 1.54i)25-s + (−0.835 + 0.482i)29-s + (0.179 − 0.311i)31-s + 0.461i·35-s + 0.821i·37-s + (−0.354 + 0.613i)41-s + (1.27 − 0.736i)43-s + (0.252 + 0.437i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.906 - 0.422i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.906 - 0.422i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6493362866\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6493362866\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (3.23 + 1.86i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.366 + 0.633i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.09 - 2.36i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.13 + 1.23i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3.73T + 17T^{2} \) |
| 19 | \( 1 - 3.26iT - 19T^{2} \) |
| 23 | \( 1 + (-4.36 + 7.56i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 2.59i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 5iT - 37T^{2} \) |
| 41 | \( 1 + (2.26 - 3.92i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-8.36 + 4.83i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.73 - 3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 0.928iT - 53T^{2} \) |
| 59 | \( 1 + (-7.26 - 4.19i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.79 - 4.5i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.09 + 2.36i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.66T + 71T^{2} \) |
| 73 | \( 1 - 9T + 73T^{2} \) |
| 79 | \( 1 + (-2.63 - 4.56i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-12.1 + 7i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 11.7T + 89T^{2} \) |
| 97 | \( 1 + (-4 - 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.695224977703199624047815579981, −8.200507525608738759717967143756, −7.44469447095679338129043963512, −6.97029967071046909595713918877, −5.66597926143285930294170202492, −4.69944068835344600994320693818, −4.42485038872002155908455430484, −3.30308329041394444165461313003, −2.26872601464439317032929646687, −0.65560566286579133030351953302,
0.35429115146978957963573755423, 2.36699045680888375322315118691, 3.09439792911219591089330610541, 3.90399000499255491286348398014, 4.84201474195858837567206248105, 5.69692089716511367365678360826, 6.75299546248311619799005159807, 7.45900808866195960902854001164, 7.79998774068367156387969149496, 8.818048348591536578466778969070