| L(s) = 1 | + 5-s + i·7-s + i·11-s + 13-s − i·23-s − 29-s + i·31-s + i·35-s − 41-s + i·43-s − i·47-s + i·55-s + i·59-s + 61-s + 65-s + ⋯ |
| L(s) = 1 | + 5-s + i·7-s + i·11-s + 13-s − i·23-s − 29-s + i·31-s + i·35-s − 41-s + i·43-s − i·47-s + i·55-s + i·59-s + 61-s + 65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.475326263\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.475326263\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 - iT - T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + iT - T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 - iT - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - iT - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 + 2iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + iT - T^{2} \) |
| 83 | \( 1 + iT - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.958360022064102644450629735256, −8.745118198834108793309262904072, −7.64272955309250517418948258730, −6.69213281627347974795697100029, −6.05491654107565598644557414359, −5.37948968053665317940103176965, −4.56257496683099762814728594362, −3.39368863719919148680598412521, −2.30844686996641907734699820501, −1.63685426782656834368027792148,
1.05524212247607180034315974689, 2.10901318746850904405151175653, 3.44695159936980779875178446219, 3.96895049333650488678674789935, 5.28711275844865197318019139107, 5.86588489901786147290552407167, 6.56787465966789100831738513382, 7.45593461183042937970334290333, 8.227913313471213013232453476468, 9.036113543597371675970571194912