Properties

Label 2-2592-1.1-c1-0-6
Degree $2$
Conductor $2592$
Sign $1$
Analytic cond. $20.6972$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4.89·7-s − 4.89·11-s + 3·13-s + 5·17-s + 4.89·19-s − 4.89·23-s − 4·25-s + 5·29-s − 4.89·35-s − 5·37-s − 2·41-s + 4.89·43-s + 9.79·47-s + 16.9·49-s + 2·53-s − 4.89·55-s + 9.79·59-s − 13·61-s + 3·65-s + 4.89·67-s + 4.89·71-s + 3·73-s + 23.9·77-s + 14.6·79-s + 9.79·83-s + 5·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.85·7-s − 1.47·11-s + 0.832·13-s + 1.21·17-s + 1.12·19-s − 1.02·23-s − 0.800·25-s + 0.928·29-s − 0.828·35-s − 0.821·37-s − 0.312·41-s + 0.747·43-s + 1.42·47-s + 2.42·49-s + 0.274·53-s − 0.660·55-s + 1.27·59-s − 1.66·61-s + 0.372·65-s + 0.598·67-s + 0.581·71-s + 0.351·73-s + 2.73·77-s + 1.65·79-s + 1.07·83-s + 0.542·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2592\)    =    \(2^{5} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(20.6972\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2592,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.345847668\)
\(L(\frac12)\) \(\approx\) \(1.345847668\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - T + 5T^{2} \)
7 \( 1 + 4.89T + 7T^{2} \)
11 \( 1 + 4.89T + 11T^{2} \)
13 \( 1 - 3T + 13T^{2} \)
17 \( 1 - 5T + 17T^{2} \)
19 \( 1 - 4.89T + 19T^{2} \)
23 \( 1 + 4.89T + 23T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 5T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 - 4.89T + 43T^{2} \)
47 \( 1 - 9.79T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 9.79T + 59T^{2} \)
61 \( 1 + 13T + 61T^{2} \)
67 \( 1 - 4.89T + 67T^{2} \)
71 \( 1 - 4.89T + 71T^{2} \)
73 \( 1 - 3T + 73T^{2} \)
79 \( 1 - 14.6T + 79T^{2} \)
83 \( 1 - 9.79T + 83T^{2} \)
89 \( 1 - 13T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.038405474590847809098253566237, −8.019664669712894958738910080091, −7.41464839354200710350958445994, −6.42041713342509422536734630160, −5.81634867419905918323451262839, −5.25325808955941660810469617642, −3.78727183164310103357149454236, −3.19914448931080631562603241290, −2.31855529708249890447889985474, −0.70774184143114507895356192899, 0.70774184143114507895356192899, 2.31855529708249890447889985474, 3.19914448931080631562603241290, 3.78727183164310103357149454236, 5.25325808955941660810469617642, 5.81634867419905918323451262839, 6.42041713342509422536734630160, 7.41464839354200710350958445994, 8.019664669712894958738910080091, 9.038405474590847809098253566237

Graph of the $Z$-function along the critical line