Properties

Label 2-2592-1.1-c1-0-40
Degree $2$
Conductor $2592$
Sign $-1$
Analytic cond. $20.6972$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 1.44·7-s + 3.44·11-s − 3.89·13-s − 4.89·17-s − 4·19-s + 0.550·23-s − 4·25-s + 9.89·29-s − 7.44·31-s − 1.44·35-s + 8.89·37-s − 2.10·41-s − 12.3·43-s − 8.34·47-s − 4.89·49-s − 0.898·53-s − 3.44·55-s + 0.348·59-s + 1.89·61-s + 3.89·65-s + 2.34·67-s + 11.7·71-s + 4.89·73-s + 5·77-s − 8.55·79-s + 5.44·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.547·7-s + 1.04·11-s − 1.08·13-s − 1.18·17-s − 0.917·19-s + 0.114·23-s − 0.800·25-s + 1.83·29-s − 1.33·31-s − 0.245·35-s + 1.46·37-s − 0.328·41-s − 1.88·43-s − 1.21·47-s − 0.699·49-s − 0.123·53-s − 0.465·55-s + 0.0453·59-s + 0.243·61-s + 0.483·65-s + 0.286·67-s + 1.40·71-s + 0.573·73-s + 0.569·77-s − 0.962·79-s + 0.598·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2592\)    =    \(2^{5} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(20.6972\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + T + 5T^{2} \)
7 \( 1 - 1.44T + 7T^{2} \)
11 \( 1 - 3.44T + 11T^{2} \)
13 \( 1 + 3.89T + 13T^{2} \)
17 \( 1 + 4.89T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 0.550T + 23T^{2} \)
29 \( 1 - 9.89T + 29T^{2} \)
31 \( 1 + 7.44T + 31T^{2} \)
37 \( 1 - 8.89T + 37T^{2} \)
41 \( 1 + 2.10T + 41T^{2} \)
43 \( 1 + 12.3T + 43T^{2} \)
47 \( 1 + 8.34T + 47T^{2} \)
53 \( 1 + 0.898T + 53T^{2} \)
59 \( 1 - 0.348T + 59T^{2} \)
61 \( 1 - 1.89T + 61T^{2} \)
67 \( 1 - 2.34T + 67T^{2} \)
71 \( 1 - 11.7T + 71T^{2} \)
73 \( 1 - 4.89T + 73T^{2} \)
79 \( 1 + 8.55T + 79T^{2} \)
83 \( 1 - 5.44T + 83T^{2} \)
89 \( 1 + 3.10T + 89T^{2} \)
97 \( 1 - 5.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.362426917531042672730256352356, −7.922721402596506256821964482028, −6.75600373080830338541019597129, −6.52281169978247837164571409321, −5.16896438118169749556681844709, −4.50747141599613733417031047079, −3.80543944869264623182005517821, −2.56820421880992707957959637341, −1.60347169177601591041401800268, 0, 1.60347169177601591041401800268, 2.56820421880992707957959637341, 3.80543944869264623182005517821, 4.50747141599613733417031047079, 5.16896438118169749556681844709, 6.52281169978247837164571409321, 6.75600373080830338541019597129, 7.922721402596506256821964482028, 8.362426917531042672730256352356

Graph of the $Z$-function along the critical line