L(s) = 1 | − 5-s + 1.44·7-s + 3.44·11-s − 3.89·13-s − 4.89·17-s − 4·19-s + 0.550·23-s − 4·25-s + 9.89·29-s − 7.44·31-s − 1.44·35-s + 8.89·37-s − 2.10·41-s − 12.3·43-s − 8.34·47-s − 4.89·49-s − 0.898·53-s − 3.44·55-s + 0.348·59-s + 1.89·61-s + 3.89·65-s + 2.34·67-s + 11.7·71-s + 4.89·73-s + 5·77-s − 8.55·79-s + 5.44·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.547·7-s + 1.04·11-s − 1.08·13-s − 1.18·17-s − 0.917·19-s + 0.114·23-s − 0.800·25-s + 1.83·29-s − 1.33·31-s − 0.245·35-s + 1.46·37-s − 0.328·41-s − 1.88·43-s − 1.21·47-s − 0.699·49-s − 0.123·53-s − 0.465·55-s + 0.0453·59-s + 0.243·61-s + 0.483·65-s + 0.286·67-s + 1.40·71-s + 0.573·73-s + 0.569·77-s − 0.962·79-s + 0.598·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + T + 5T^{2} \) |
| 7 | \( 1 - 1.44T + 7T^{2} \) |
| 11 | \( 1 - 3.44T + 11T^{2} \) |
| 13 | \( 1 + 3.89T + 13T^{2} \) |
| 17 | \( 1 + 4.89T + 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 - 0.550T + 23T^{2} \) |
| 29 | \( 1 - 9.89T + 29T^{2} \) |
| 31 | \( 1 + 7.44T + 31T^{2} \) |
| 37 | \( 1 - 8.89T + 37T^{2} \) |
| 41 | \( 1 + 2.10T + 41T^{2} \) |
| 43 | \( 1 + 12.3T + 43T^{2} \) |
| 47 | \( 1 + 8.34T + 47T^{2} \) |
| 53 | \( 1 + 0.898T + 53T^{2} \) |
| 59 | \( 1 - 0.348T + 59T^{2} \) |
| 61 | \( 1 - 1.89T + 61T^{2} \) |
| 67 | \( 1 - 2.34T + 67T^{2} \) |
| 71 | \( 1 - 11.7T + 71T^{2} \) |
| 73 | \( 1 - 4.89T + 73T^{2} \) |
| 79 | \( 1 + 8.55T + 79T^{2} \) |
| 83 | \( 1 - 5.44T + 83T^{2} \) |
| 89 | \( 1 + 3.10T + 89T^{2} \) |
| 97 | \( 1 - 5.89T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.362426917531042672730256352356, −7.922721402596506256821964482028, −6.75600373080830338541019597129, −6.52281169978247837164571409321, −5.16896438118169749556681844709, −4.50747141599613733417031047079, −3.80543944869264623182005517821, −2.56820421880992707957959637341, −1.60347169177601591041401800268, 0,
1.60347169177601591041401800268, 2.56820421880992707957959637341, 3.80543944869264623182005517821, 4.50747141599613733417031047079, 5.16896438118169749556681844709, 6.52281169978247837164571409321, 6.75600373080830338541019597129, 7.922721402596506256821964482028, 8.362426917531042672730256352356