L(s) = 1 | − 2.64·5-s + 4.37·7-s + 3.58·11-s − 6.58·13-s − 1.73·17-s − 2.55·19-s − 7.58·23-s + 2.00·25-s − 6.10·29-s + 8.75·31-s − 11.5·35-s + 2.58·37-s + 1.82·41-s + 2.55·43-s − 8·47-s + 12.1·49-s − 1.82·53-s − 9.47·55-s − 8·59-s − 1.41·61-s + 17.4·65-s + 2.55·67-s − 0.417·71-s − 6.16·73-s + 15.6·77-s + 9.47·79-s − 15.1·83-s + ⋯ |
L(s) = 1 | − 1.18·5-s + 1.65·7-s + 1.08·11-s − 1.82·13-s − 0.420·17-s − 0.585·19-s − 1.58·23-s + 0.400·25-s − 1.13·29-s + 1.57·31-s − 1.95·35-s + 0.424·37-s + 0.285·41-s + 0.388·43-s − 1.16·47-s + 1.73·49-s − 0.251·53-s − 1.27·55-s − 1.04·59-s − 0.181·61-s + 2.16·65-s + 0.311·67-s − 0.0495·71-s − 0.721·73-s + 1.78·77-s + 1.06·79-s − 1.66·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 2.64T + 5T^{2} \) |
| 7 | \( 1 - 4.37T + 7T^{2} \) |
| 11 | \( 1 - 3.58T + 11T^{2} \) |
| 13 | \( 1 + 6.58T + 13T^{2} \) |
| 17 | \( 1 + 1.73T + 17T^{2} \) |
| 19 | \( 1 + 2.55T + 19T^{2} \) |
| 23 | \( 1 + 7.58T + 23T^{2} \) |
| 29 | \( 1 + 6.10T + 29T^{2} \) |
| 31 | \( 1 - 8.75T + 31T^{2} \) |
| 37 | \( 1 - 2.58T + 37T^{2} \) |
| 41 | \( 1 - 1.82T + 41T^{2} \) |
| 43 | \( 1 - 2.55T + 43T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 + 1.82T + 53T^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 + 1.41T + 61T^{2} \) |
| 67 | \( 1 - 2.55T + 67T^{2} \) |
| 71 | \( 1 + 0.417T + 71T^{2} \) |
| 73 | \( 1 + 6.16T + 73T^{2} \) |
| 79 | \( 1 - 9.47T + 79T^{2} \) |
| 83 | \( 1 + 15.1T + 83T^{2} \) |
| 89 | \( 1 - 12.3T + 89T^{2} \) |
| 97 | \( 1 + 5.16T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.157214336706746281769584032627, −7.925951703415401491242461822009, −7.19916895445033444370066786054, −6.27083080444142904579250458760, −5.11199846971203564501646671283, −4.37831544075706491915357677542, −4.01647694889110382792536718271, −2.53299562983234932945825523790, −1.57929474521379930906329591596, 0,
1.57929474521379930906329591596, 2.53299562983234932945825523790, 4.01647694889110382792536718271, 4.37831544075706491915357677542, 5.11199846971203564501646671283, 6.27083080444142904579250458760, 7.19916895445033444370066786054, 7.925951703415401491242461822009, 8.157214336706746281769584032627