Properties

Label 2-2592-1.1-c1-0-28
Degree $2$
Conductor $2592$
Sign $-1$
Analytic cond. $20.6972$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.73·5-s + 6.46·13-s − 5.73·17-s + 8.92·25-s + 10.6·29-s − 9.39·37-s − 8·41-s − 7·49-s − 4·53-s + 15.3·61-s − 24.1·65-s − 16.8·73-s + 21.3·85-s + 0.660·89-s − 18·97-s − 20·101-s − 14.3·109-s + 4.12·113-s + ⋯
L(s)  = 1  − 1.66·5-s + 1.79·13-s − 1.39·17-s + 1.78·25-s + 1.97·29-s − 1.54·37-s − 1.24·41-s − 49-s − 0.549·53-s + 1.97·61-s − 2.99·65-s − 1.97·73-s + 2.32·85-s + 0.0699·89-s − 1.82·97-s − 1.99·101-s − 1.37·109-s + 0.387·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2592\)    =    \(2^{5} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(20.6972\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3.73T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 6.46T + 13T^{2} \)
17 \( 1 + 5.73T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 10.6T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 9.39T + 37T^{2} \)
41 \( 1 + 8T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 4T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 15.3T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 16.8T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 0.660T + 89T^{2} \)
97 \( 1 + 18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.549664320534920130452322868605, −7.940983534529901900071170250520, −6.79763238598130107172210796561, −6.55323386207423441565482066239, −5.21342169130791343157784205613, −4.32102035360810672281463146472, −3.74822689864830892315566360089, −2.90937050589233368890153506241, −1.35113073394202297598788621155, 0, 1.35113073394202297598788621155, 2.90937050589233368890153506241, 3.74822689864830892315566360089, 4.32102035360810672281463146472, 5.21342169130791343157784205613, 6.55323386207423441565482066239, 6.79763238598130107172210796561, 7.940983534529901900071170250520, 8.549664320534920130452322868605

Graph of the $Z$-function along the critical line