Properties

Label 2-2592-1.1-c1-0-26
Degree $2$
Conductor $2592$
Sign $-1$
Analytic cond. $20.6972$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.46·5-s + 0.464·13-s + 7.92·17-s + 14.9·25-s − 8.46·29-s + 11.3·37-s − 10·41-s − 7·49-s − 14·53-s − 5.39·61-s − 2.07·65-s − 10.8·73-s − 35.3·85-s − 8.85·89-s + 18·97-s + 2·101-s − 20.3·109-s + 6.85·113-s + ⋯
L(s)  = 1  − 1.99·5-s + 0.128·13-s + 1.92·17-s + 2.98·25-s − 1.57·29-s + 1.87·37-s − 1.56·41-s − 49-s − 1.92·53-s − 0.690·61-s − 0.256·65-s − 1.27·73-s − 3.83·85-s − 0.938·89-s + 1.82·97-s + 0.199·101-s − 1.94·109-s + 0.644·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2592\)    =    \(2^{5} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(20.6972\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 4.46T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 0.464T + 13T^{2} \)
17 \( 1 - 7.92T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 8.46T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 11.3T + 37T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 14T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 5.39T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 10.8T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 8.85T + 89T^{2} \)
97 \( 1 - 18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.199234627009631173491892201221, −7.79515094847959590588506878913, −7.28268689162276652758007993137, −6.25691693908072363262966121520, −5.22724566305105273202413373083, −4.40731150190944285276890829366, −3.56203580692724898330422010749, −3.06769458728378563523590662439, −1.29162222912781718445665208888, 0, 1.29162222912781718445665208888, 3.06769458728378563523590662439, 3.56203580692724898330422010749, 4.40731150190944285276890829366, 5.22724566305105273202413373083, 6.25691693908072363262966121520, 7.28268689162276652758007993137, 7.79515094847959590588506878913, 8.199234627009631173491892201221

Graph of the $Z$-function along the critical line