L(s) = 1 | + (1.38 + 1.16i)2-s + (−0.906 − 0.422i)3-s + (0.396 + 2.25i)4-s + (0.939 + 0.342i)5-s + (−0.766 − 1.64i)6-s + (−1.16 + 2.01i)8-s + (0.642 + 0.766i)9-s + (0.906 + 1.56i)10-s + (−0.642 + 0.233i)11-s + (0.591 − 2.20i)12-s + (−1.52 + 1.28i)13-s + (−0.707 − 0.707i)15-s + (−1.82 + 0.662i)16-s + 1.81i·18-s + (0.5 − 0.866i)19-s + (−0.396 + 2.25i)20-s + ⋯ |
L(s) = 1 | + (1.38 + 1.16i)2-s + (−0.906 − 0.422i)3-s + (0.396 + 2.25i)4-s + (0.939 + 0.342i)5-s + (−0.766 − 1.64i)6-s + (−1.16 + 2.01i)8-s + (0.642 + 0.766i)9-s + (0.906 + 1.56i)10-s + (−0.642 + 0.233i)11-s + (0.591 − 2.20i)12-s + (−1.52 + 1.28i)13-s + (−0.707 − 0.707i)15-s + (−1.82 + 0.662i)16-s + 1.81i·18-s + (0.5 − 0.866i)19-s + (−0.396 + 2.25i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2565 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.784 - 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2565 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.784 - 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.017136514\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.017136514\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.906 + 0.422i)T \) |
| 5 | \( 1 + (-0.939 - 0.342i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-1.38 - 1.16i)T + (0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (0.642 - 0.233i)T + (0.766 - 0.642i)T^{2} \) |
| 13 | \( 1 + (1.52 - 1.28i)T + (0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 37 | \( 1 + (-0.422 - 0.731i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 - 1.63T + T^{2} \) |
| 59 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (-1.47 + 1.24i)T + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.486 - 0.177i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.415851830444707465603249291492, −8.161867342453939977857392797628, −7.21795808404961000936925587955, −6.95399420590398260588057978991, −6.30780472585474632799290805718, −5.39735414720442548495095118129, −4.99826171125501772925583760137, −4.31961734367023049749362543575, −2.86355940305672815992921063292, −2.05801718759323415713169708839,
0.933776080285739571961483271423, 2.22559154254152848361003385199, 3.01993646813311245175178401938, 4.05582827229644002065188708875, 4.98204287320928696192119267126, 5.43481176711944204703703498908, 5.79803205547556929925799321978, 6.82754120215062198490447680821, 7.950619807434767837273467894481, 9.381478087972110741647919666012