Properties

Label 2-2555-2555.2554-c0-0-11
Degree $2$
Conductor $2555$
Sign $1$
Analytic cond. $1.27511$
Root an. cond. $1.12920$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s − 5-s + 7-s + 12-s − 15-s + 16-s − 20-s + 21-s + 25-s − 27-s + 28-s + 31-s − 35-s − 43-s + 48-s + 49-s − 53-s + 59-s − 60-s + 64-s − 71-s − 73-s + 75-s − 79-s − 80-s − 81-s + ⋯
L(s)  = 1  + 3-s + 4-s − 5-s + 7-s + 12-s − 15-s + 16-s − 20-s + 21-s + 25-s − 27-s + 28-s + 31-s − 35-s − 43-s + 48-s + 49-s − 53-s + 59-s − 60-s + 64-s − 71-s − 73-s + 75-s − 79-s − 80-s − 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2555 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2555 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2555\)    =    \(5 \cdot 7 \cdot 73\)
Sign: $1$
Analytic conductor: \(1.27511\)
Root analytic conductor: \(1.12920\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2555} (2554, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2555,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.954652831\)
\(L(\frac12)\) \(\approx\) \(1.954652831\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 - T \)
73 \( 1 + T \)
good2 \( ( 1 - T )( 1 + T ) \)
3 \( 1 - T + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 - T + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 + T + T^{2} \)
59 \( 1 - T + T^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( 1 + T + T^{2} \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.661668827720639479907630316269, −8.325965599001708071449486497222, −7.64343802754598041200362207141, −7.11286018663275475710885690122, −6.10741230778949741267887803262, −5.06190758370419477932640954714, −4.12125926868061284154249549932, −3.22910906936097877200052030190, −2.51845563174701039352660896496, −1.45593858288276049696480537024, 1.45593858288276049696480537024, 2.51845563174701039352660896496, 3.22910906936097877200052030190, 4.12125926868061284154249549932, 5.06190758370419477932640954714, 6.10741230778949741267887803262, 7.11286018663275475710885690122, 7.64343802754598041200362207141, 8.325965599001708071449486497222, 8.661668827720639479907630316269

Graph of the $Z$-function along the critical line