L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + 4i·7-s + i·8-s − 9-s − 4·11-s + i·12-s − 2i·13-s + 4·14-s + 16-s − i·17-s + i·18-s + 4·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 1.51i·7-s + 0.353i·8-s − 0.333·9-s − 1.20·11-s + 0.288i·12-s − 0.554i·13-s + 1.06·14-s + 0.250·16-s − 0.242i·17-s + 0.235i·18-s + 0.917·19-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
2550
= 2⋅3⋅52⋅17
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
20.3618 |
Root analytic conductor: |
4.51241 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2550(2449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2550, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
0.9610973036 |
L(21) |
≈ |
0.9610973036 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1+iT |
| 5 | 1 |
| 17 | 1+iT |
good | 7 | 1−4iT−7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1+2iT−13T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+12iT−43T2 |
| 47 | 1+8iT−47T2 |
| 53 | 1+2iT−53T2 |
| 59 | 1+12T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1+14iT−73T2 |
| 79 | 1−12T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.526696157553920822526586781070, −8.061682512454208525152312623585, −7.15500795569719800791717256822, −6.03206777548489003367142518978, −5.41144885246067512606594430658, −4.78564837535476125633908619600, −3.24443869805087509369657731728, −2.67367673038326662384389447723, −1.87432373695221615464050964211, −0.34941243309231677094097767329,
1.14234966438259630109544124512, 2.85764367860221137790042945007, 3.84573451300330212044988773821, 4.50783288174807522656531790605, 5.28032134863114357356395140543, 6.12268663313949988592973792494, 7.08869841627912843901530571541, 7.69102384465031280252182372834, 8.181018576289516401880431443991, 9.484350459542729175077605349481