L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + 4i·7-s + i·8-s − 9-s − 4·11-s + i·12-s − 2i·13-s + 4·14-s + 16-s − i·17-s + i·18-s + 4·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 1.51i·7-s + 0.353i·8-s − 0.333·9-s − 1.20·11-s + 0.288i·12-s − 0.554i·13-s + 1.06·14-s + 0.250·16-s − 0.242i·17-s + 0.235i·18-s + 0.917·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9610973036\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9610973036\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + iT \) |
good | 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 + 4iT - 23T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 - 6iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 12iT - 43T^{2} \) |
| 47 | \( 1 + 8iT - 47T^{2} \) |
| 53 | \( 1 + 2iT - 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + 4iT - 67T^{2} \) |
| 71 | \( 1 + 4T + 71T^{2} \) |
| 73 | \( 1 + 14iT - 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + 18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.526696157553920822526586781070, −8.061682512454208525152312623585, −7.15500795569719800791717256822, −6.03206777548489003367142518978, −5.41144885246067512606594430658, −4.78564837535476125633908619600, −3.24443869805087509369657731728, −2.67367673038326662384389447723, −1.87432373695221615464050964211, −0.34941243309231677094097767329,
1.14234966438259630109544124512, 2.85764367860221137790042945007, 3.84573451300330212044988773821, 4.50783288174807522656531790605, 5.28032134863114357356395140543, 6.12268663313949988592973792494, 7.08869841627912843901530571541, 7.69102384465031280252182372834, 8.181018576289516401880431443991, 9.484350459542729175077605349481