L(s) = 1 | + i·2-s − i·3-s − 4-s + 6-s − i·8-s − 9-s + 4·11-s + i·12-s − 2i·13-s + 16-s + i·17-s − i·18-s + 4·19-s + 4i·22-s − 4i·23-s − 24-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s − 0.353i·8-s − 0.333·9-s + 1.20·11-s + 0.288i·12-s − 0.554i·13-s + 0.250·16-s + 0.242i·17-s − 0.235i·18-s + 0.917·19-s + 0.852i·22-s − 0.834i·23-s − 0.204·24-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
2550
= 2⋅3⋅52⋅17
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
20.3618 |
Root analytic conductor: |
4.51241 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2550(2449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2550, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.682861287 |
L(21) |
≈ |
1.682861287 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1+iT |
| 5 | 1 |
| 17 | 1−iT |
good | 7 | 1−7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1+2iT−13T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+6iT−37T2 |
| 41 | 1+10T+41T2 |
| 43 | 1−8iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1+8iT−67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−2iT−73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1−14T+89T2 |
| 97 | 1+10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.674976872205014579610399513176, −8.035609656333998927155692578483, −7.17973435817003348097957125423, −6.67711219316901086933526183224, −5.84623157877719780983481316184, −5.15512757928069106842408712785, −4.05414912395753202368217812084, −3.23934968937428611353574434117, −1.86874871860044182921554026911, −0.66659293232709081740859685894,
1.11452878732348489724099533534, 2.20686752998281625449359413655, 3.49275402817289348986607960888, 3.86206364322777521341628953009, 4.93038821072975749988228583327, 5.59984040164011358027007334065, 6.68157484600785741437958656523, 7.42637657357619837608742266578, 8.561070558430045159539506325686, 9.102686175362718376924115419268