L(s) = 1 | + i·2-s + i·3-s − 4-s − 6-s − 4i·7-s − i·8-s − 9-s − 2·11-s − i·12-s + 6i·13-s + 4·14-s + 16-s − i·17-s − i·18-s − 4·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 1.51i·7-s − 0.353i·8-s − 0.333·9-s − 0.603·11-s − 0.288i·12-s + 1.66i·13-s + 1.06·14-s + 0.250·16-s − 0.242i·17-s − 0.235i·18-s − 0.917·19-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2550
= 2⋅3⋅52⋅17
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
20.3618 |
Root analytic conductor: |
4.51241 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2550(2449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2550, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.460183495 |
L(21) |
≈ |
1.460183495 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1−iT |
| 5 | 1 |
| 17 | 1+iT |
good | 7 | 1+4iT−7T2 |
| 11 | 1+2T+11T2 |
| 13 | 1−6iT−13T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+5iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−10T+31T2 |
| 37 | 1−9iT−37T2 |
| 41 | 1−11T+41T2 |
| 43 | 1+10iT−43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1−11iT−53T2 |
| 59 | 1−15T+59T2 |
| 61 | 1+T+61T2 |
| 67 | 1+14iT−67T2 |
| 71 | 1−11T+71T2 |
| 73 | 1+8iT−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1−5iT−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1−8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.979641706963142822271586399806, −8.208234869543162599507136360856, −7.48282601625325442294587195209, −6.64426613762148612579762386462, −6.22400587899111351619107430839, −4.75041175774852964809176751631, −4.50602854023142110750108078345, −3.72711382141726017625883179466, −2.40385887975412528415758913542, −0.76913164906147697318826679636,
0.74134550664436845406359186341, 2.22956103492190910402914332489, 2.64596247974211042143188680008, 3.65534335159504863052349560232, 4.98796752048631405859558859072, 5.63503650627466803185498972449, 6.18577458303303873598219905120, 7.45324991615617745713253489975, 8.292336160259142959544631054070, 8.546008060917776011503918865748