L(s) = 1 | + i·2-s + i·3-s − 4-s − 6-s − 4i·7-s − i·8-s − 9-s − 2·11-s − i·12-s + 6i·13-s + 4·14-s + 16-s − i·17-s − i·18-s − 4·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 1.51i·7-s − 0.353i·8-s − 0.333·9-s − 0.603·11-s − 0.288i·12-s + 1.66i·13-s + 1.06·14-s + 0.250·16-s − 0.242i·17-s − 0.235i·18-s − 0.917·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.460183495\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.460183495\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + iT \) |
good | 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 - 6iT - 13T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + 5iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 10T + 31T^{2} \) |
| 37 | \( 1 - 9iT - 37T^{2} \) |
| 41 | \( 1 - 11T + 41T^{2} \) |
| 43 | \( 1 + 10iT - 43T^{2} \) |
| 47 | \( 1 - 8iT - 47T^{2} \) |
| 53 | \( 1 - 11iT - 53T^{2} \) |
| 59 | \( 1 - 15T + 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 + 14iT - 67T^{2} \) |
| 71 | \( 1 - 11T + 71T^{2} \) |
| 73 | \( 1 + 8iT - 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 - 5iT - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 - 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.979641706963142822271586399806, −8.208234869543162599507136360856, −7.48282601625325442294587195209, −6.64426613762148612579762386462, −6.22400587899111351619107430839, −4.75041175774852964809176751631, −4.50602854023142110750108078345, −3.72711382141726017625883179466, −2.40385887975412528415758913542, −0.76913164906147697318826679636,
0.74134550664436845406359186341, 2.22956103492190910402914332489, 2.64596247974211042143188680008, 3.65534335159504863052349560232, 4.98796752048631405859558859072, 5.63503650627466803185498972449, 6.18577458303303873598219905120, 7.45324991615617745713253489975, 8.292336160259142959544631054070, 8.546008060917776011503918865748