L(s) = 1 | + (1 − 1.73i)3-s + (−0.5 − 0.866i)5-s + (−0.499 − 0.866i)9-s + (2 − 3.46i)11-s + 13-s − 1.99·15-s + (1 − 1.73i)17-s + (0.5 + 0.866i)19-s + (3.5 + 6.06i)23-s + (2 − 3.46i)25-s + 4.00·27-s − 5·29-s + (4.5 − 7.79i)31-s + (−3.99 − 6.92i)33-s + (1 + 1.73i)37-s + ⋯ |
L(s) = 1 | + (0.577 − 0.999i)3-s + (−0.223 − 0.387i)5-s + (−0.166 − 0.288i)9-s + (0.603 − 1.04i)11-s + 0.277·13-s − 0.516·15-s + (0.242 − 0.420i)17-s + (0.114 + 0.198i)19-s + (0.729 + 1.26i)23-s + (0.400 − 0.692i)25-s + 0.769·27-s − 0.928·29-s + (0.808 − 1.39i)31-s + (−0.696 − 1.20i)33-s + (0.164 + 0.284i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.386+0.922i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(−0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
−0.386+0.922i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(1145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), −0.386+0.922i)
|
Particular Values
L(1) |
≈ |
2.240260509 |
L(21) |
≈ |
2.240260509 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1−T |
good | 3 | 1+(−1+1.73i)T+(−1.5−2.59i)T2 |
| 5 | 1+(0.5+0.866i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2+3.46i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−1+1.73i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.5−0.866i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3.5−6.06i)T+(−11.5+19.9i)T2 |
| 29 | 1+5T+29T2 |
| 31 | 1+(−4.5+7.79i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1−1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1−2T+41T2 |
| 43 | 1−T+43T2 |
| 47 | 1+(4.5+7.79i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.5−2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−29.5−51.0i)T2 |
| 61 | 1+(7+12.1i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5−8.66i)T+(−33.5−58.0i)T2 |
| 71 | 1+14T+71T2 |
| 73 | 1+(1.5−2.59i)T+(−36.5−63.2i)T2 |
| 79 | 1+(2.5+4.33i)T+(−39.5+68.4i)T2 |
| 83 | 1−5T+83T2 |
| 89 | 1+(−4.5−7.79i)T+(−44.5+77.0i)T2 |
| 97 | 1+T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.576557333304831194821038880185, −7.86503275641902387232717258353, −7.33172431260927536375271535051, −6.41395353529576368830825707878, −5.71998758098083371334693730987, −4.67166847417759882508252958057, −3.62155780516508405477539417710, −2.82659703759217071234806557988, −1.65098321519603733686082269949, −0.75395473796557944257600146978,
1.40487108238202274894544768303, 2.78669386246033289589965643685, 3.46543002298796179756053140952, 4.38152068970085890237994398879, 4.85481365142780101930846655449, 6.12892221193525003179226695600, 6.91388535701494826473542892400, 7.59615207306682079744560021213, 8.680865787335957949403779501525, 9.092496202876055546141401646199