L(s) = 1 | + (0.913 + 0.406i)3-s + (−0.104 + 0.994i)4-s + (0.104 − 0.994i)7-s + (0.669 + 0.743i)9-s + (−0.499 + 0.866i)12-s + (0.309 − 0.951i)13-s + (−0.978 − 0.207i)16-s + (0.209 + 1.98i)19-s + (0.499 − 0.866i)21-s + (0.913 + 0.406i)25-s + (0.309 + 0.951i)27-s + (0.978 + 0.207i)28-s + (0.978 − 0.207i)31-s + (−0.809 + 0.587i)36-s + (−0.913 + 0.406i)37-s + ⋯ |
L(s) = 1 | + (0.913 + 0.406i)3-s + (−0.104 + 0.994i)4-s + (0.104 − 0.994i)7-s + (0.669 + 0.743i)9-s + (−0.499 + 0.866i)12-s + (0.309 − 0.951i)13-s + (−0.978 − 0.207i)16-s + (0.209 + 1.98i)19-s + (0.499 − 0.866i)21-s + (0.913 + 0.406i)25-s + (0.309 + 0.951i)27-s + (0.978 + 0.207i)28-s + (0.978 − 0.207i)31-s + (−0.809 + 0.587i)36-s + (−0.913 + 0.406i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.574 - 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.574 - 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.686813494\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.686813494\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.913 - 0.406i)T \) |
| 7 | \( 1 + (-0.104 + 0.994i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 5 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 13 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 19 | \( 1 + (-0.209 - 1.98i)T + (-0.978 + 0.207i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.978 + 0.207i)T + (0.913 - 0.406i)T^{2} \) |
| 37 | \( 1 + (0.913 - 0.406i)T + (0.669 - 0.743i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 53 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 59 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 61 | \( 1 + (0.978 + 0.207i)T + (0.913 + 0.406i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.104 - 0.994i)T + (-0.978 - 0.207i)T^{2} \) |
| 79 | \( 1 + (1.33 + 1.48i)T + (-0.104 + 0.994i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.018861916770900954434567565015, −8.342155360196429723988347022527, −7.75172597652574514588672290392, −7.34207209049570794950238497611, −6.22834448696609269812756573534, −5.00250628473898255232055074935, −4.18121369534257294974783482957, −3.49192219940620170828346371872, −2.92578141685740708991646023027, −1.52005838600099981232640955989,
1.17841448927007039178935154618, 2.26300845188766402048960021602, 2.90327370804002604959320741411, 4.32077513330176904296663594526, 4.96284194177036215715306539562, 6.01508705524807674230635416543, 6.69826934020299744814480644630, 7.31553258190811477608035726181, 8.640735867767368909045972655456, 8.862419955186203125837921915610