L(s) = 1 | + (0.743 − 0.669i)3-s + (0.978 + 0.207i)4-s + (−0.838 + 0.544i)7-s + (0.104 − 0.994i)9-s + (0.866 − 0.5i)12-s + (0.418 + 0.304i)13-s + (0.913 + 0.406i)16-s + (1.38 − 0.294i)19-s + (−0.258 + 0.965i)21-s + (−0.669 − 0.743i)25-s + (−0.587 − 0.809i)27-s + (−0.933 + 0.358i)28-s + (0.406 + 0.913i)31-s + (0.309 − 0.951i)36-s + (−1.15 + 1.28i)37-s + ⋯ |
L(s) = 1 | + (0.743 − 0.669i)3-s + (0.978 + 0.207i)4-s + (−0.838 + 0.544i)7-s + (0.104 − 0.994i)9-s + (0.866 − 0.5i)12-s + (0.418 + 0.304i)13-s + (0.913 + 0.406i)16-s + (1.38 − 0.294i)19-s + (−0.258 + 0.965i)21-s + (−0.669 − 0.743i)25-s + (−0.587 − 0.809i)27-s + (−0.933 + 0.358i)28-s + (0.406 + 0.913i)31-s + (0.309 − 0.951i)36-s + (−1.15 + 1.28i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.869898251\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.869898251\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.743 + 0.669i)T \) |
| 7 | \( 1 + (0.838 - 0.544i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 5 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 13 | \( 1 + (-0.418 - 0.304i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 19 | \( 1 + (-1.38 + 0.294i)T + (0.913 - 0.406i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.406 - 0.913i)T + (-0.669 + 0.743i)T^{2} \) |
| 37 | \( 1 + (1.15 - 1.28i)T + (-0.104 - 0.994i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + 1.93iT - T^{2} \) |
| 47 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 53 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 59 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 61 | \( 1 + (-1.76 - 0.785i)T + (0.669 + 0.743i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (1.88 + 0.401i)T + (0.913 + 0.406i)T^{2} \) |
| 79 | \( 1 + (1.40 + 0.147i)T + (0.978 + 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (1.01 - 1.40i)T + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.776950461779287124406298598443, −8.379717783811750123760081015910, −7.30739822553899904291389231455, −6.90679246200424824145656910903, −6.18799497685109794146953699401, −5.39291679026695103408024641757, −3.82604239349986578512826001141, −3.12582369460679287725278182125, −2.43268594559080053861421555563, −1.38324516836234460545431378074,
1.45140770228324604923979676857, 2.69392796235837098168404370247, 3.36284333127398381636376123529, 4.07394538985294847722904547666, 5.35971893718146119559728324540, 5.97467429309078497178058966208, 7.03950802141968160121331601803, 7.55780373657463470829352797063, 8.292101658123763927831597634819, 9.415445415101829032329238099824