L(s) = 1 | + (−0.743 − 0.669i)3-s + (0.978 − 0.207i)4-s + (0.544 − 0.838i)7-s + (0.104 + 0.994i)9-s + (−0.866 − 0.5i)12-s + (1.56 − 1.13i)13-s + (0.913 − 0.406i)16-s + (−1.38 − 0.294i)19-s + (−0.965 + 0.258i)21-s + (−0.669 + 0.743i)25-s + (0.587 − 0.809i)27-s + (0.358 − 0.933i)28-s + (−0.406 + 0.913i)31-s + (0.309 + 0.951i)36-s + (1.15 + 1.28i)37-s + ⋯ |
L(s) = 1 | + (−0.743 − 0.669i)3-s + (0.978 − 0.207i)4-s + (0.544 − 0.838i)7-s + (0.104 + 0.994i)9-s + (−0.866 − 0.5i)12-s + (1.56 − 1.13i)13-s + (0.913 − 0.406i)16-s + (−1.38 − 0.294i)19-s + (−0.965 + 0.258i)21-s + (−0.669 + 0.743i)25-s + (0.587 − 0.809i)27-s + (0.358 − 0.933i)28-s + (−0.406 + 0.913i)31-s + (0.309 + 0.951i)36-s + (1.15 + 1.28i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.224 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.224 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.321941492\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.321941492\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.743 + 0.669i)T \) |
| 7 | \( 1 + (-0.544 + 0.838i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.978 + 0.207i)T^{2} \) |
| 5 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 13 | \( 1 + (-1.56 + 1.13i)T + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 19 | \( 1 + (1.38 + 0.294i)T + (0.913 + 0.406i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.406 - 0.913i)T + (-0.669 - 0.743i)T^{2} \) |
| 37 | \( 1 + (-1.15 - 1.28i)T + (-0.104 + 0.994i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 0.517iT - T^{2} \) |
| 47 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 53 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 59 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 61 | \( 1 + (-0.472 + 0.210i)T + (0.669 - 0.743i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.506 - 0.107i)T + (0.913 - 0.406i)T^{2} \) |
| 79 | \( 1 + (1.40 - 0.147i)T + (0.978 - 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1.01 + 1.40i)T + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.575002942265751811585099041317, −8.019821258204023257858274602587, −7.29766425782025416916741942120, −6.58892335372157789231825882706, −5.97485089677430024183048829984, −5.26278848939379100555376882107, −4.16362214615912426655239332025, −3.07539842727836651911849887775, −1.82288238623627137209669140176, −1.04770002073304835119147729489,
1.58311780912464634107084696336, 2.50106705251299080042289378429, 3.86505705312708923861376872899, 4.31385040980050140519501312347, 5.64413608902341675811188238966, 6.11938236032570468110566419050, 6.62296471278014049601828165744, 7.77711941176291592171860560689, 8.569887399575461739564527865507, 9.186485175796054995753738306130