L(s) = 1 | + (0.104 − 0.994i)3-s + (0.913 + 0.406i)4-s + (−0.406 + 0.913i)7-s + (−0.978 − 0.207i)9-s + (0.499 − 0.866i)12-s + (0.535 + 1.64i)13-s + (0.669 + 0.743i)16-s + (0.866 + 0.499i)21-s + (−0.104 + 0.994i)25-s + (−0.309 + 0.951i)27-s + (−0.743 + 0.669i)28-s + (0.669 − 0.743i)31-s + (−0.809 − 0.587i)36-s + (−0.104 − 0.994i)37-s + (1.69 − 0.360i)39-s + ⋯ |
L(s) = 1 | + (0.104 − 0.994i)3-s + (0.913 + 0.406i)4-s + (−0.406 + 0.913i)7-s + (−0.978 − 0.207i)9-s + (0.499 − 0.866i)12-s + (0.535 + 1.64i)13-s + (0.669 + 0.743i)16-s + (0.866 + 0.499i)21-s + (−0.104 + 0.994i)25-s + (−0.309 + 0.951i)27-s + (−0.743 + 0.669i)28-s + (0.669 − 0.743i)31-s + (−0.809 − 0.587i)36-s + (−0.104 − 0.994i)37-s + (1.69 − 0.360i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 - 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 - 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.455497956\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.455497956\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.104 + 0.994i)T \) |
| 7 | \( 1 + (0.406 - 0.913i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 5 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (-0.535 - 1.64i)T + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 19 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.669 + 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 37 | \( 1 + (0.104 + 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
| 41 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - 1.73T + T^{2} \) |
| 47 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 53 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 59 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 61 | \( 1 + (1.15 + 1.28i)T + (-0.104 + 0.994i)T^{2} \) |
| 67 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (1.58 + 0.704i)T + (0.669 + 0.743i)T^{2} \) |
| 79 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.978032876840371291755957135288, −8.327146390852252944285278984696, −7.42258594940098202016844071767, −6.89443804049676853476549372830, −6.13318776821818472768997194729, −5.67605774182289659073448508485, −4.16946403636147730900931469360, −3.14641214678061879116583047629, −2.31059418664565113096713007995, −1.59352780617575461617540875036,
0.980924010023325528860118634220, 2.66557876045343184849854766644, 3.25763085885768108066321371347, 4.20815498585879728394966939263, 5.17138401955983251967538725381, 5.97046648151261792476092117278, 6.58298312816194162471140211400, 7.66431296143320302613385105905, 8.176546330238132130494517713213, 9.213147047312922490676236330239