L(s) = 1 | + (0.994 − 0.104i)3-s + (−0.913 + 0.406i)4-s + (−0.933 − 0.358i)7-s + (0.978 − 0.207i)9-s + (−0.866 + 0.499i)12-s + (−0.596 + 1.83i)13-s + (0.669 − 0.743i)16-s + (1.29 + 0.575i)19-s + (−0.965 − 0.258i)21-s + (0.104 + 0.994i)25-s + (0.951 − 0.309i)27-s + (0.998 − 0.0523i)28-s + (0.743 − 0.669i)31-s + (−0.809 + 0.587i)36-s + (−0.181 + 1.72i)37-s + ⋯ |
L(s) = 1 | + (0.994 − 0.104i)3-s + (−0.913 + 0.406i)4-s + (−0.933 − 0.358i)7-s + (0.978 − 0.207i)9-s + (−0.866 + 0.499i)12-s + (−0.596 + 1.83i)13-s + (0.669 − 0.743i)16-s + (1.29 + 0.575i)19-s + (−0.965 − 0.258i)21-s + (0.104 + 0.994i)25-s + (0.951 − 0.309i)27-s + (0.998 − 0.0523i)28-s + (0.743 − 0.669i)31-s + (−0.809 + 0.587i)36-s + (−0.181 + 1.72i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.598 - 0.800i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.598 - 0.800i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.218607978\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.218607978\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.994 + 0.104i)T \) |
| 7 | \( 1 + (0.933 + 0.358i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 5 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (0.596 - 1.83i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 19 | \( 1 + (-1.29 - 0.575i)T + (0.669 + 0.743i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.743 + 0.669i)T + (0.104 - 0.994i)T^{2} \) |
| 37 | \( 1 + (0.181 - 1.72i)T + (-0.978 - 0.207i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - 0.517iT - T^{2} \) |
| 47 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 53 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 59 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 61 | \( 1 + (-0.346 + 0.384i)T + (-0.104 - 0.994i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.472 + 0.210i)T + (0.669 - 0.743i)T^{2} \) |
| 79 | \( 1 + (0.294 + 1.38i)T + (-0.913 + 0.406i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (1.64 + 0.535i)T + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.377458074936541371044917841896, −8.530187080640321499971754100453, −7.69279453399527879965841331405, −7.11676010189590979927988674914, −6.33480663457276490847500085404, −5.00651982927059388555421573709, −4.24509928473034070855911034958, −3.53594544318395558290154662761, −2.79912213617015541831760998845, −1.41459151323040323462542605719,
0.807722655911062036215423290357, 2.52899208651637171009172153482, 3.18977072442004163778536564389, 4.04090851810480287418962049389, 5.12094195278489545002622054062, 5.63092115241284208526566495025, 6.78834903919022041116125991706, 7.64474322669028624443623147279, 8.348913476581426498015014781493, 9.013210470551115241414134305276