Properties

Label 2-2535-1.1-c1-0-19
Degree $2$
Conductor $2535$
Sign $1$
Analytic cond. $20.2420$
Root an. cond. $4.49911$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.26·2-s − 3-s + 3.11·4-s + 5-s + 2.26·6-s − 1.26·7-s − 2.52·8-s + 9-s − 2.26·10-s + 4.52·11-s − 3.11·12-s + 2.85·14-s − 15-s − 0.523·16-s − 4.49·17-s − 2.26·18-s + 5.11·19-s + 3.11·20-s + 1.26·21-s − 10.2·22-s + 2.23·23-s + 2.52·24-s + 25-s − 27-s − 3.93·28-s − 1.37·29-s + 2.26·30-s + ⋯
L(s)  = 1  − 1.59·2-s − 0.577·3-s + 1.55·4-s + 0.447·5-s + 0.923·6-s − 0.476·7-s − 0.892·8-s + 0.333·9-s − 0.715·10-s + 1.36·11-s − 0.899·12-s + 0.762·14-s − 0.258·15-s − 0.130·16-s − 1.08·17-s − 0.533·18-s + 1.17·19-s + 0.696·20-s + 0.275·21-s − 2.18·22-s + 0.465·23-s + 0.515·24-s + 0.200·25-s − 0.192·27-s − 0.742·28-s − 0.255·29-s + 0.412·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2535\)    =    \(3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(20.2420\)
Root analytic conductor: \(4.49911\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2535,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7242890080\)
\(L(\frac12)\) \(\approx\) \(0.7242890080\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good2 \( 1 + 2.26T + 2T^{2} \)
7 \( 1 + 1.26T + 7T^{2} \)
11 \( 1 - 4.52T + 11T^{2} \)
17 \( 1 + 4.49T + 17T^{2} \)
19 \( 1 - 5.11T + 19T^{2} \)
23 \( 1 - 2.23T + 23T^{2} \)
29 \( 1 + 1.37T + 29T^{2} \)
31 \( 1 - 8.87T + 31T^{2} \)
37 \( 1 + 0.231T + 37T^{2} \)
41 \( 1 - 1.14T + 41T^{2} \)
43 \( 1 - 6.37T + 43T^{2} \)
47 \( 1 + 10.7T + 47T^{2} \)
53 \( 1 - 4.52T + 53T^{2} \)
59 \( 1 + 0.853T + 59T^{2} \)
61 \( 1 - 4.63T + 61T^{2} \)
67 \( 1 - 13.1T + 67T^{2} \)
71 \( 1 + 9.60T + 71T^{2} \)
73 \( 1 - 13.7T + 73T^{2} \)
79 \( 1 + 8.87T + 79T^{2} \)
83 \( 1 + 8.23T + 83T^{2} \)
89 \( 1 - 6.62T + 89T^{2} \)
97 \( 1 - 10.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.059052696551416850029426786354, −8.360827733947179507965142659579, −7.38374377854596774315812180517, −6.61671312441268628995401131953, −6.34397721532183717445105786044, −5.12268696289500800055779870207, −4.08842349534311842685138679788, −2.79777535135361529284954269599, −1.62427717701669106561410556519, −0.74712520427779293049359071043, 0.74712520427779293049359071043, 1.62427717701669106561410556519, 2.79777535135361529284954269599, 4.08842349534311842685138679788, 5.12268696289500800055779870207, 6.34397721532183717445105786044, 6.61671312441268628995401131953, 7.38374377854596774315812180517, 8.360827733947179507965142659579, 9.059052696551416850029426786354

Graph of the $Z$-function along the critical line