L(s) = 1 | + 0.703i·2-s + 3.72·3-s + 3.50·4-s − 1.98·5-s + 2.62i·6-s − 11.6i·7-s + 5.28i·8-s + 4.88·9-s − 1.39i·10-s + (10.9 + 0.121i)11-s + 13.0·12-s − 9.72i·13-s + 8.16·14-s − 7.37·15-s + 10.3·16-s − 0.249i·17-s + ⋯ |
L(s) = 1 | + 0.351i·2-s + 1.24·3-s + 0.876·4-s − 0.396·5-s + 0.436i·6-s − 1.65i·7-s + 0.660i·8-s + 0.542·9-s − 0.139i·10-s + (0.999 + 0.0110i)11-s + 1.08·12-s − 0.748i·13-s + 0.583·14-s − 0.491·15-s + 0.644·16-s − 0.0146i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0110i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.70866 - 0.0149918i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.70866 - 0.0149918i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (-10.9 - 0.121i)T \) |
| 23 | \( 1 - 4.79T \) |
good | 2 | \( 1 - 0.703iT - 4T^{2} \) |
| 3 | \( 1 - 3.72T + 9T^{2} \) |
| 5 | \( 1 + 1.98T + 25T^{2} \) |
| 7 | \( 1 + 11.6iT - 49T^{2} \) |
| 13 | \( 1 + 9.72iT - 169T^{2} \) |
| 17 | \( 1 + 0.249iT - 289T^{2} \) |
| 19 | \( 1 - 29.1iT - 361T^{2} \) |
| 29 | \( 1 - 32.3iT - 841T^{2} \) |
| 31 | \( 1 + 43.2T + 961T^{2} \) |
| 37 | \( 1 - 42.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 34.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 32.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 18.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 48.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + 27.2T + 3.48e3T^{2} \) |
| 61 | \( 1 - 46.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 35.9T + 4.48e3T^{2} \) |
| 71 | \( 1 + 63.5T + 5.04e3T^{2} \) |
| 73 | \( 1 - 59.6iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 119. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 139. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 9.28T + 7.92e3T^{2} \) |
| 97 | \( 1 + 122.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74755871224391693957054281670, −10.75752945736669425270171852756, −9.929673692842635354509119789758, −8.638391240202549915205303502739, −7.62485040845497734183078780732, −7.30313051418126321731244021062, −5.94045552045172362715829276027, −4.00813013116330645676038425597, −3.27770158339498103592516552427, −1.53867297230580754464225247129,
2.01229723973156330599118708762, 2.78430705112601100006960322928, 4.00646842570972475845643572420, 5.83533094222357167113014785460, 6.94612299575247556111803390198, 8.048377284781023731792356647376, 9.131947571385267081582417465955, 9.435248254541981103012650028581, 11.25366809795403470568580135469, 11.68255308463803330866394890195