| L(s) = 1 | − 1.61i·2-s + 2.50·3-s + 1.38·4-s + 5.13·5-s − 4.05i·6-s + 0.928i·7-s − 8.70i·8-s − 2.72·9-s − 8.30i·10-s + (4.95 + 9.82i)11-s + 3.46·12-s − 16.1i·13-s + 1.50·14-s + 12.8·15-s − 8.56·16-s + 11.2i·17-s + ⋯ |
| L(s) = 1 | − 0.808i·2-s + 0.835·3-s + 0.345·4-s + 1.02·5-s − 0.675i·6-s + 0.132i·7-s − 1.08i·8-s − 0.302·9-s − 0.830i·10-s + (0.450 + 0.892i)11-s + 0.288·12-s − 1.23i·13-s + 0.107·14-s + 0.857·15-s − 0.535·16-s + 0.664i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.450 + 0.892i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.450 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(2.27680 - 1.40210i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.27680 - 1.40210i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 + (-4.95 - 9.82i)T \) |
| 23 | \( 1 - 4.79T \) |
| good | 2 | \( 1 + 1.61iT - 4T^{2} \) |
| 3 | \( 1 - 2.50T + 9T^{2} \) |
| 5 | \( 1 - 5.13T + 25T^{2} \) |
| 7 | \( 1 - 0.928iT - 49T^{2} \) |
| 13 | \( 1 + 16.1iT - 169T^{2} \) |
| 17 | \( 1 - 11.2iT - 289T^{2} \) |
| 19 | \( 1 - 13.8iT - 361T^{2} \) |
| 29 | \( 1 - 3.71iT - 841T^{2} \) |
| 31 | \( 1 - 43.1T + 961T^{2} \) |
| 37 | \( 1 + 63.2T + 1.36e3T^{2} \) |
| 41 | \( 1 + 67.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 24.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 80.7T + 2.20e3T^{2} \) |
| 53 | \( 1 + 68.1T + 2.80e3T^{2} \) |
| 59 | \( 1 - 55.9T + 3.48e3T^{2} \) |
| 61 | \( 1 - 86.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 76.7T + 4.48e3T^{2} \) |
| 71 | \( 1 + 57.8T + 5.04e3T^{2} \) |
| 73 | \( 1 - 135. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 53.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 29.6iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 126.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 1.53T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72656850759625871497643449510, −10.38409737915274024115824073971, −10.00819250167606751559392486329, −8.953600497211117807910888563866, −7.87569724352061832306069875185, −6.59463877492961183130569618363, −5.51382538948332772697243881147, −3.70520646353763959890232301188, −2.61416480565156051589702769591, −1.63768124299359300200737060304,
1.95326759964789872310615644458, 3.12092561302020622440373827583, 4.98033178183812916884304696738, 6.19098003519025689326582859919, 6.83234982886706257415104358751, 8.135480776312594881541755876178, 8.918726264366612545025043260369, 9.719148100525828325753445347263, 11.13975382193851598003655213433, 11.79683786019835626928267243983