L(s) = 1 | − 3.34i·2-s + 3.76·3-s − 7.22·4-s + 8.66·5-s − 12.6i·6-s + 13.9i·7-s + 10.7i·8-s + 5.17·9-s − 29.0i·10-s + (2.13 − 10.7i)11-s − 27.1·12-s − 7.42i·13-s + 46.6·14-s + 32.6·15-s + 7.25·16-s + 2.62i·17-s + ⋯ |
L(s) = 1 | − 1.67i·2-s + 1.25·3-s − 1.80·4-s + 1.73·5-s − 2.10i·6-s + 1.98i·7-s + 1.34i·8-s + 0.575·9-s − 2.90i·10-s + (0.194 − 0.980i)11-s − 2.26·12-s − 0.571i·13-s + 3.33·14-s + 2.17·15-s + 0.453·16-s + 0.154i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.194 + 0.980i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.194 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.73076 - 2.10722i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.73076 - 2.10722i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (-2.13 + 10.7i)T \) |
| 23 | \( 1 + 4.79T \) |
good | 2 | \( 1 + 3.34iT - 4T^{2} \) |
| 3 | \( 1 - 3.76T + 9T^{2} \) |
| 5 | \( 1 - 8.66T + 25T^{2} \) |
| 7 | \( 1 - 13.9iT - 49T^{2} \) |
| 13 | \( 1 + 7.42iT - 169T^{2} \) |
| 17 | \( 1 - 2.62iT - 289T^{2} \) |
| 19 | \( 1 + 13.1iT - 361T^{2} \) |
| 29 | \( 1 + 1.27iT - 841T^{2} \) |
| 31 | \( 1 + 0.318T + 961T^{2} \) |
| 37 | \( 1 + 54.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 64.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 39.4iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 33.0T + 2.20e3T^{2} \) |
| 53 | \( 1 + 14.4T + 2.80e3T^{2} \) |
| 59 | \( 1 + 68.1T + 3.48e3T^{2} \) |
| 61 | \( 1 - 88.2iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 18.4T + 4.48e3T^{2} \) |
| 71 | \( 1 - 107.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 45.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 66.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 69.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 17.7T + 7.92e3T^{2} \) |
| 97 | \( 1 - 95.3T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.58278236467132890494914416159, −10.46360594753552449963731610238, −9.514444171706119063724891931774, −8.974511790723379099955066613256, −8.495143854696781444009907735691, −6.11036129225440806511602483662, −5.20578388667508787223289004257, −3.16881969903372874140545221319, −2.58479676717091335274572791516, −1.75878609194942520765258831341,
1.83644257859909601327659218289, 3.86161468077643555572512680822, 5.01639714279037592707042708870, 6.40005962987258757210842974028, 7.11951467497828429089829933778, 7.914242414217063619101203727218, 9.116050112150733258326044137837, 9.696127615276244933273198808677, 10.53447835327871493853708647823, 12.82193641812283217616146108213