| L(s) = 1 | + 2.88i·2-s + 1.17·3-s − 4.31·4-s + 1.65·5-s + 3.37i·6-s + 6.12i·7-s − 0.919i·8-s − 7.62·9-s + 4.77i·10-s + (10.8 + 1.62i)11-s − 5.05·12-s − 3.05i·13-s − 17.6·14-s + 1.94·15-s − 14.6·16-s + 25.1i·17-s + ⋯ |
| L(s) = 1 | + 1.44i·2-s + 0.390·3-s − 1.07·4-s + 0.331·5-s + 0.562i·6-s + 0.874i·7-s − 0.114i·8-s − 0.847·9-s + 0.477i·10-s + (0.989 + 0.147i)11-s − 0.421·12-s − 0.235i·13-s − 1.26·14-s + 0.129·15-s − 0.913·16-s + 1.47i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.147i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.989 - 0.147i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.122267 + 1.64982i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.122267 + 1.64982i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 + (-10.8 - 1.62i)T \) |
| 23 | \( 1 + 4.79T \) |
| good | 2 | \( 1 - 2.88iT - 4T^{2} \) |
| 3 | \( 1 - 1.17T + 9T^{2} \) |
| 5 | \( 1 - 1.65T + 25T^{2} \) |
| 7 | \( 1 - 6.12iT - 49T^{2} \) |
| 13 | \( 1 + 3.05iT - 169T^{2} \) |
| 17 | \( 1 - 25.1iT - 289T^{2} \) |
| 19 | \( 1 - 4.90iT - 361T^{2} \) |
| 29 | \( 1 + 4.85iT - 841T^{2} \) |
| 31 | \( 1 - 31.3T + 961T^{2} \) |
| 37 | \( 1 - 18.5T + 1.36e3T^{2} \) |
| 41 | \( 1 + 17.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 55.4iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 77.9T + 2.20e3T^{2} \) |
| 53 | \( 1 - 47.3T + 2.80e3T^{2} \) |
| 59 | \( 1 - 25.3T + 3.48e3T^{2} \) |
| 61 | \( 1 - 72.9iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 18.1T + 4.48e3T^{2} \) |
| 71 | \( 1 + 68.4T + 5.04e3T^{2} \) |
| 73 | \( 1 - 74.7iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 128. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 33.0iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 76.4T + 7.92e3T^{2} \) |
| 97 | \( 1 - 184.T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.33562098919540558613853339841, −11.46375967891621229027690402513, −10.02176103926331839584779712570, −8.757914965283814186563617650852, −8.528249809476816769628968194164, −7.30252371625405133177690544425, −5.96495978897702530284308216997, −5.76559079094049159308670628592, −4.05432406145390488576361639005, −2.27360385276600012165241882548,
0.840097344599400043962509820580, 2.39704220322142049714223167345, 3.49238402094828097669813968098, 4.58188047957195671796731306361, 6.27401877532939552294129001036, 7.50705061895305660493285217416, 8.952159605823081972978402754216, 9.557445021013173631521825850709, 10.49080515625365259574494489376, 11.55983326025692146190539578567