L(s) = 1 | + 3.51i·2-s − 4.54·3-s − 8.38·4-s − 6.03·5-s − 15.9i·6-s + 3.84i·7-s − 15.4i·8-s + 11.6·9-s − 21.2i·10-s + (−9.75 + 5.07i)11-s + 38.0·12-s − 10.2i·13-s − 13.5·14-s + 27.4·15-s + 20.7·16-s + 14.5i·17-s + ⋯ |
L(s) = 1 | + 1.75i·2-s − 1.51·3-s − 2.09·4-s − 1.20·5-s − 2.66i·6-s + 0.549i·7-s − 1.92i·8-s + 1.29·9-s − 2.12i·10-s + (−0.887 + 0.461i)11-s + 3.17·12-s − 0.787i·13-s − 0.966·14-s + 1.82·15-s + 1.29·16-s + 0.858i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 - 0.461i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.887 - 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.124644 + 0.0304942i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.124644 + 0.0304942i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (9.75 - 5.07i)T \) |
| 23 | \( 1 + 4.79T \) |
good | 2 | \( 1 - 3.51iT - 4T^{2} \) |
| 3 | \( 1 + 4.54T + 9T^{2} \) |
| 5 | \( 1 + 6.03T + 25T^{2} \) |
| 7 | \( 1 - 3.84iT - 49T^{2} \) |
| 13 | \( 1 + 10.2iT - 169T^{2} \) |
| 17 | \( 1 - 14.5iT - 289T^{2} \) |
| 19 | \( 1 - 25.7iT - 361T^{2} \) |
| 29 | \( 1 + 3.68iT - 841T^{2} \) |
| 31 | \( 1 - 47.7T + 961T^{2} \) |
| 37 | \( 1 + 22.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + 42.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 52.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 4.97T + 2.20e3T^{2} \) |
| 53 | \( 1 + 50.4T + 2.80e3T^{2} \) |
| 59 | \( 1 + 98.9T + 3.48e3T^{2} \) |
| 61 | \( 1 + 64.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 68.1T + 4.48e3T^{2} \) |
| 71 | \( 1 - 83.2T + 5.04e3T^{2} \) |
| 73 | \( 1 - 128. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 65.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 136. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 40.2T + 7.92e3T^{2} \) |
| 97 | \( 1 + 102.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.26020130920342330381001470284, −10.91235172792010710880286445934, −9.993063759860860315715488344771, −8.316404301125427980622634932905, −7.85369255319562823110205857578, −6.75767367413152110166500934554, −5.79056696730006407425632430346, −5.16130944840082976299343726108, −4.03233396672314823097012288614, −0.12348871081222184754865710619,
0.831524721330992173963576158128, 2.96606539488841695077982730765, 4.38373308914269352511337170870, 4.92845332922931249301328093477, 6.65007950276306985350402846012, 7.928449557200686496717999261040, 9.306329612207109949814372828288, 10.42591586454930181852166127014, 11.07862228554133224956589183340, 11.60283050408661172989025486043