L(s) = 1 | + (0.433 − 0.900i)3-s + (0.900 − 0.433i)4-s + (−0.556 − 0.268i)7-s + (−0.623 − 0.781i)9-s − i·12-s + (1.00 − 1.26i)13-s + (0.623 − 0.781i)16-s + (0.702 + 1.45i)19-s + (−0.483 + 0.385i)21-s + (−0.900 + 0.433i)25-s + (−0.974 + 0.222i)27-s − 0.618·28-s + (0.602 − 0.137i)31-s + (−0.900 − 0.433i)36-s + (−1.26 + 1.00i)37-s + ⋯ |
L(s) = 1 | + (0.433 − 0.900i)3-s + (0.900 − 0.433i)4-s + (−0.556 − 0.268i)7-s + (−0.623 − 0.781i)9-s − i·12-s + (1.00 − 1.26i)13-s + (0.623 − 0.781i)16-s + (0.702 + 1.45i)19-s + (−0.483 + 0.385i)21-s + (−0.900 + 0.433i)25-s + (−0.974 + 0.222i)27-s − 0.618·28-s + (0.602 − 0.137i)31-s + (−0.900 − 0.433i)36-s + (−1.26 + 1.00i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0973 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0973 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.639449262\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.639449262\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.433 + 0.900i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 5 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 7 | \( 1 + (0.556 + 0.268i)T + (0.623 + 0.781i)T^{2} \) |
| 11 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 13 | \( 1 + (-1.00 + 1.26i)T + (-0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-0.702 - 1.45i)T + (-0.623 + 0.781i)T^{2} \) |
| 23 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (-0.602 + 0.137i)T + (0.900 - 0.433i)T^{2} \) |
| 37 | \( 1 + (1.26 - 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.602 + 0.137i)T + (0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 53 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.268 + 0.556i)T + (-0.623 - 0.781i)T^{2} \) |
| 67 | \( 1 + (-1.00 - 1.26i)T + (-0.222 + 0.974i)T^{2} \) |
| 71 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (1.57 + 0.360i)T + (0.900 + 0.433i)T^{2} \) |
| 79 | \( 1 + (-1.26 + 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 83 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 97 | \( 1 + (-0.268 - 0.556i)T + (-0.623 + 0.781i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.655777893140547970382949901468, −7.983727933174301285196993307849, −7.41146052023648670673670186475, −6.54866677544466390433302975550, −5.99480334113009229821182748474, −5.34998041720959555556160070022, −3.52877138425840324903883991580, −3.22231622867700364618763521247, −1.95655758618763198208599369894, −1.06639215672873844562521664396,
1.88415597651392593574899784920, 2.81365059398152046657690665603, 3.56593304083867216466966271891, 4.32871403383070492738463209082, 5.40144430059670496196630694877, 6.32692504091318866144920850982, 6.93227676679743047129208771899, 7.85511118235086202511699000384, 8.699469295496993048962784356550, 9.199121224682139446856165088137