L(s) = 1 | + (0.433 − 0.900i)3-s + (0.900 − 0.433i)4-s + (−0.556 − 0.268i)7-s + (−0.623 − 0.781i)9-s − i·12-s + (1.00 − 1.26i)13-s + (0.623 − 0.781i)16-s + (0.702 + 1.45i)19-s + (−0.483 + 0.385i)21-s + (−0.900 + 0.433i)25-s + (−0.974 + 0.222i)27-s − 0.618·28-s + (0.602 − 0.137i)31-s + (−0.900 − 0.433i)36-s + (−1.26 + 1.00i)37-s + ⋯ |
L(s) = 1 | + (0.433 − 0.900i)3-s + (0.900 − 0.433i)4-s + (−0.556 − 0.268i)7-s + (−0.623 − 0.781i)9-s − i·12-s + (1.00 − 1.26i)13-s + (0.623 − 0.781i)16-s + (0.702 + 1.45i)19-s + (−0.483 + 0.385i)21-s + (−0.900 + 0.433i)25-s + (−0.974 + 0.222i)27-s − 0.618·28-s + (0.602 − 0.137i)31-s + (−0.900 − 0.433i)36-s + (−1.26 + 1.00i)37-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.0973+0.995i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.0973+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
−0.0973+0.995i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1037,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), −0.0973+0.995i)
|
Particular Values
L(21) |
≈ |
1.639449262 |
L(21) |
≈ |
1.639449262 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.433+0.900i)T |
| 29 | 1 |
good | 2 | 1+(−0.900+0.433i)T2 |
| 5 | 1+(0.900−0.433i)T2 |
| 7 | 1+(0.556+0.268i)T+(0.623+0.781i)T2 |
| 11 | 1+(−0.222−0.974i)T2 |
| 13 | 1+(−1.00+1.26i)T+(−0.222−0.974i)T2 |
| 17 | 1+T2 |
| 19 | 1+(−0.702−1.45i)T+(−0.623+0.781i)T2 |
| 23 | 1+(0.900+0.433i)T2 |
| 31 | 1+(−0.602+0.137i)T+(0.900−0.433i)T2 |
| 37 | 1+(1.26−1.00i)T+(0.222−0.974i)T2 |
| 41 | 1+T2 |
| 43 | 1+(0.602+0.137i)T+(0.900+0.433i)T2 |
| 47 | 1+(−0.222−0.974i)T2 |
| 53 | 1+(0.900−0.433i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−0.268+0.556i)T+(−0.623−0.781i)T2 |
| 67 | 1+(−1.00−1.26i)T+(−0.222+0.974i)T2 |
| 71 | 1+(0.222+0.974i)T2 |
| 73 | 1+(1.57+0.360i)T+(0.900+0.433i)T2 |
| 79 | 1+(−1.26+1.00i)T+(0.222−0.974i)T2 |
| 83 | 1+(−0.623+0.781i)T2 |
| 89 | 1+(−0.900+0.433i)T2 |
| 97 | 1+(−0.268−0.556i)T+(−0.623+0.781i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.655777893140547970382949901468, −7.983727933174301285196993307849, −7.41146052023648670673670186475, −6.54866677544466390433302975550, −5.99480334113009229821182748474, −5.34998041720959555556160070022, −3.52877138425840324903883991580, −3.22231622867700364618763521247, −1.95655758618763198208599369894, −1.06639215672873844562521664396,
1.88415597651392593574899784920, 2.81365059398152046657690665603, 3.56593304083867216466966271891, 4.32871403383070492738463209082, 5.40144430059670496196630694877, 6.32692504091318866144920850982, 6.93227676679743047129208771899, 7.85511118235086202511699000384, 8.699469295496993048962784356550, 9.199121224682139446856165088137