L(s) = 1 | + (−0.781 − 0.623i)3-s + (−0.623 − 0.781i)4-s + (−1.00 + 1.26i)7-s + (0.222 + 0.974i)9-s + 0.999i·12-s + (0.137 − 0.602i)13-s + (−0.222 + 0.974i)16-s + (0.483 − 0.385i)19-s + (1.57 − 0.360i)21-s + (0.623 + 0.781i)25-s + (0.433 − 0.900i)27-s + 1.61·28-s + (0.702 − 1.45i)31-s + (0.623 − 0.781i)36-s + (0.602 − 0.137i)37-s + ⋯ |
L(s) = 1 | + (−0.781 − 0.623i)3-s + (−0.623 − 0.781i)4-s + (−1.00 + 1.26i)7-s + (0.222 + 0.974i)9-s + 0.999i·12-s + (0.137 − 0.602i)13-s + (−0.222 + 0.974i)16-s + (0.483 − 0.385i)19-s + (1.57 − 0.360i)21-s + (0.623 + 0.781i)25-s + (0.433 − 0.900i)27-s + 1.61·28-s + (0.702 − 1.45i)31-s + (0.623 − 0.781i)36-s + (0.602 − 0.137i)37-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(2333,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), 0.447+0.894i)
|
Particular Values
L(21) |
≈ |
0.6292342113 |
L(21) |
≈ |
0.6292342113 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.781+0.623i)T |
| 29 | 1 |
good | 2 | 1+(0.623+0.781i)T2 |
| 5 | 1+(−0.623−0.781i)T2 |
| 7 | 1+(1.00−1.26i)T+(−0.222−0.974i)T2 |
| 11 | 1+(−0.900−0.433i)T2 |
| 13 | 1+(−0.137+0.602i)T+(−0.900−0.433i)T2 |
| 17 | 1+T2 |
| 19 | 1+(−0.483+0.385i)T+(0.222−0.974i)T2 |
| 23 | 1+(−0.623+0.781i)T2 |
| 31 | 1+(−0.702+1.45i)T+(−0.623−0.781i)T2 |
| 37 | 1+(−0.602+0.137i)T+(0.900−0.433i)T2 |
| 41 | 1+T2 |
| 43 | 1+(0.702+1.45i)T+(−0.623+0.781i)T2 |
| 47 | 1+(−0.900−0.433i)T2 |
| 53 | 1+(−0.623−0.781i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−1.26−1.00i)T+(0.222+0.974i)T2 |
| 67 | 1+(−0.137−0.602i)T+(−0.900+0.433i)T2 |
| 71 | 1+(0.900+0.433i)T2 |
| 73 | 1+(0.268+0.556i)T+(−0.623+0.781i)T2 |
| 79 | 1+(0.602−0.137i)T+(0.900−0.433i)T2 |
| 83 | 1+(0.222−0.974i)T2 |
| 89 | 1+(0.623+0.781i)T2 |
| 97 | 1+(−1.26+1.00i)T+(0.222−0.974i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.983967351293250231728298147209, −8.339284996772870821817336085956, −7.24639423546378888429633266219, −6.45978986777240623344816600286, −5.66939287166789494211504389952, −5.47685306498139793594330806570, −4.41013119292383430822666637704, −3.08007443178083725859172251232, −2.05343757789164354178090807491, −0.66185113984262191023502915910,
0.907283815424059814689246507850, 3.06012684181152651747183641252, 3.68630147658889003507356410270, 4.43051368746593416092071226949, 5.04740375109040675759741820280, 6.36316521440990021713132945629, 6.75884300083555550465672662094, 7.64669904382527152178873595279, 8.567951317729646489561141178968, 9.400228770298539088746450802191