L(s) = 1 | + (−0.781 − 0.623i)3-s + (−0.623 − 0.781i)4-s + (−1.00 + 1.26i)7-s + (0.222 + 0.974i)9-s + 0.999i·12-s + (0.137 − 0.602i)13-s + (−0.222 + 0.974i)16-s + (0.483 − 0.385i)19-s + (1.57 − 0.360i)21-s + (0.623 + 0.781i)25-s + (0.433 − 0.900i)27-s + 1.61·28-s + (0.702 − 1.45i)31-s + (0.623 − 0.781i)36-s + (0.602 − 0.137i)37-s + ⋯ |
L(s) = 1 | + (−0.781 − 0.623i)3-s + (−0.623 − 0.781i)4-s + (−1.00 + 1.26i)7-s + (0.222 + 0.974i)9-s + 0.999i·12-s + (0.137 − 0.602i)13-s + (−0.222 + 0.974i)16-s + (0.483 − 0.385i)19-s + (1.57 − 0.360i)21-s + (0.623 + 0.781i)25-s + (0.433 − 0.900i)27-s + 1.61·28-s + (0.702 − 1.45i)31-s + (0.623 − 0.781i)36-s + (0.602 − 0.137i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6292342113\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6292342113\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.781 + 0.623i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 7 | \( 1 + (1.00 - 1.26i)T + (-0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.137 + 0.602i)T + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-0.483 + 0.385i)T + (0.222 - 0.974i)T^{2} \) |
| 23 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (-0.702 + 1.45i)T + (-0.623 - 0.781i)T^{2} \) |
| 37 | \( 1 + (-0.602 + 0.137i)T + (0.900 - 0.433i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.702 + 1.45i)T + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-1.26 - 1.00i)T + (0.222 + 0.974i)T^{2} \) |
| 67 | \( 1 + (-0.137 - 0.602i)T + (-0.900 + 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (0.268 + 0.556i)T + (-0.623 + 0.781i)T^{2} \) |
| 79 | \( 1 + (0.602 - 0.137i)T + (0.900 - 0.433i)T^{2} \) |
| 83 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 97 | \( 1 + (-1.26 + 1.00i)T + (0.222 - 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.983967351293250231728298147209, −8.339284996772870821817336085956, −7.24639423546378888429633266219, −6.45978986777240623344816600286, −5.66939287166789494211504389952, −5.47685306498139793594330806570, −4.41013119292383430822666637704, −3.08007443178083725859172251232, −2.05343757789164354178090807491, −0.66185113984262191023502915910,
0.907283815424059814689246507850, 3.06012684181152651747183641252, 3.68630147658889003507356410270, 4.43051368746593416092071226949, 5.04740375109040675759741820280, 6.36316521440990021713132945629, 6.75884300083555550465672662094, 7.64669904382527152178873595279, 8.567951317729646489561141178968, 9.400228770298539088746450802191