Properties

Label 2-2523-87.71-c0-0-3
Degree $2$
Conductor $2523$
Sign $0.447 + 0.894i$
Analytic cond. $1.25914$
Root an. cond. $1.12211$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.781 − 0.623i)3-s + (−0.623 − 0.781i)4-s + (−1.00 + 1.26i)7-s + (0.222 + 0.974i)9-s + 0.999i·12-s + (0.137 − 0.602i)13-s + (−0.222 + 0.974i)16-s + (0.483 − 0.385i)19-s + (1.57 − 0.360i)21-s + (0.623 + 0.781i)25-s + (0.433 − 0.900i)27-s + 1.61·28-s + (0.702 − 1.45i)31-s + (0.623 − 0.781i)36-s + (0.602 − 0.137i)37-s + ⋯
L(s)  = 1  + (−0.781 − 0.623i)3-s + (−0.623 − 0.781i)4-s + (−1.00 + 1.26i)7-s + (0.222 + 0.974i)9-s + 0.999i·12-s + (0.137 − 0.602i)13-s + (−0.222 + 0.974i)16-s + (0.483 − 0.385i)19-s + (1.57 − 0.360i)21-s + (0.623 + 0.781i)25-s + (0.433 − 0.900i)27-s + 1.61·28-s + (0.702 − 1.45i)31-s + (0.623 − 0.781i)36-s + (0.602 − 0.137i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2523\)    =    \(3 \cdot 29^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(1.25914\)
Root analytic conductor: \(1.12211\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2523} (2333, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2523,\ (\ :0),\ 0.447 + 0.894i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6292342113\)
\(L(\frac12)\) \(\approx\) \(0.6292342113\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.781 + 0.623i)T \)
29 \( 1 \)
good2 \( 1 + (0.623 + 0.781i)T^{2} \)
5 \( 1 + (-0.623 - 0.781i)T^{2} \)
7 \( 1 + (1.00 - 1.26i)T + (-0.222 - 0.974i)T^{2} \)
11 \( 1 + (-0.900 - 0.433i)T^{2} \)
13 \( 1 + (-0.137 + 0.602i)T + (-0.900 - 0.433i)T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 + (-0.483 + 0.385i)T + (0.222 - 0.974i)T^{2} \)
23 \( 1 + (-0.623 + 0.781i)T^{2} \)
31 \( 1 + (-0.702 + 1.45i)T + (-0.623 - 0.781i)T^{2} \)
37 \( 1 + (-0.602 + 0.137i)T + (0.900 - 0.433i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 + (0.702 + 1.45i)T + (-0.623 + 0.781i)T^{2} \)
47 \( 1 + (-0.900 - 0.433i)T^{2} \)
53 \( 1 + (-0.623 - 0.781i)T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + (-1.26 - 1.00i)T + (0.222 + 0.974i)T^{2} \)
67 \( 1 + (-0.137 - 0.602i)T + (-0.900 + 0.433i)T^{2} \)
71 \( 1 + (0.900 + 0.433i)T^{2} \)
73 \( 1 + (0.268 + 0.556i)T + (-0.623 + 0.781i)T^{2} \)
79 \( 1 + (0.602 - 0.137i)T + (0.900 - 0.433i)T^{2} \)
83 \( 1 + (0.222 - 0.974i)T^{2} \)
89 \( 1 + (0.623 + 0.781i)T^{2} \)
97 \( 1 + (-1.26 + 1.00i)T + (0.222 - 0.974i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.983967351293250231728298147209, −8.339284996772870821817336085956, −7.24639423546378888429633266219, −6.45978986777240623344816600286, −5.66939287166789494211504389952, −5.47685306498139793594330806570, −4.41013119292383430822666637704, −3.08007443178083725859172251232, −2.05343757789164354178090807491, −0.66185113984262191023502915910, 0.907283815424059814689246507850, 3.06012684181152651747183641252, 3.68630147658889003507356410270, 4.43051368746593416092071226949, 5.04740375109040675759741820280, 6.36316521440990021713132945629, 6.75884300083555550465672662094, 7.64669904382527152178873595279, 8.567951317729646489561141178968, 9.400228770298539088746450802191

Graph of the $Z$-function along the critical line