L(s) = 1 | + (0.781 − 0.623i)3-s + (−0.623 + 0.781i)4-s + (−1.00 − 1.26i)7-s + (0.222 − 0.974i)9-s + 0.999i·12-s + (0.137 + 0.602i)13-s + (−0.222 − 0.974i)16-s + (−0.483 − 0.385i)19-s + (−1.57 − 0.360i)21-s + (0.623 − 0.781i)25-s + (−0.433 − 0.900i)27-s + 1.61·28-s + (−0.702 − 1.45i)31-s + (0.623 + 0.781i)36-s + (−0.602 − 0.137i)37-s + ⋯ |
L(s) = 1 | + (0.781 − 0.623i)3-s + (−0.623 + 0.781i)4-s + (−1.00 − 1.26i)7-s + (0.222 − 0.974i)9-s + 0.999i·12-s + (0.137 + 0.602i)13-s + (−0.222 − 0.974i)16-s + (−0.483 − 0.385i)19-s + (−1.57 − 0.360i)21-s + (0.623 − 0.781i)25-s + (−0.433 − 0.900i)27-s + 1.61·28-s + (−0.702 − 1.45i)31-s + (0.623 + 0.781i)36-s + (−0.602 − 0.137i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.235 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.235 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9776644154\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9776644154\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.781 + 0.623i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 7 | \( 1 + (1.00 + 1.26i)T + (-0.222 + 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.137 - 0.602i)T + (-0.900 + 0.433i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.483 + 0.385i)T + (0.222 + 0.974i)T^{2} \) |
| 23 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + (0.702 + 1.45i)T + (-0.623 + 0.781i)T^{2} \) |
| 37 | \( 1 + (0.602 + 0.137i)T + (0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.702 + 1.45i)T + (-0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (1.26 - 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 67 | \( 1 + (-0.137 + 0.602i)T + (-0.900 - 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 73 | \( 1 + (-0.268 + 0.556i)T + (-0.623 - 0.781i)T^{2} \) |
| 79 | \( 1 + (-0.602 - 0.137i)T + (0.900 + 0.433i)T^{2} \) |
| 83 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 + (1.26 + 1.00i)T + (0.222 + 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.916351866415626470738327536223, −8.077599723237157644386837386825, −7.30013179022852470924746788728, −6.91645854976125765015516903768, −6.03631453238743528186964693131, −4.51262246542365270254079404369, −3.91174556932971863591125252808, −3.26376568576919341952869216645, −2.23171053401064292144911824718, −0.58662283106179555050582212728,
1.70061124788177607234121540452, 2.87862136625238154875706835298, 3.52118520706816695812869374679, 4.64631538563051062024800012970, 5.39263506024133614144438476458, 6.00198671449767955669276453777, 6.95961641154329385418794679530, 8.171255167988821949463257887954, 8.756215618456770734374988086325, 9.303658381454771214791613818251