L(s) = 1 | + (0.781 − 0.623i)3-s + (−0.623 + 0.781i)4-s + (−1.00 − 1.26i)7-s + (0.222 − 0.974i)9-s + 0.999i·12-s + (0.137 + 0.602i)13-s + (−0.222 − 0.974i)16-s + (−0.483 − 0.385i)19-s + (−1.57 − 0.360i)21-s + (0.623 − 0.781i)25-s + (−0.433 − 0.900i)27-s + 1.61·28-s + (−0.702 − 1.45i)31-s + (0.623 + 0.781i)36-s + (−0.602 − 0.137i)37-s + ⋯ |
L(s) = 1 | + (0.781 − 0.623i)3-s + (−0.623 + 0.781i)4-s + (−1.00 − 1.26i)7-s + (0.222 − 0.974i)9-s + 0.999i·12-s + (0.137 + 0.602i)13-s + (−0.222 − 0.974i)16-s + (−0.483 − 0.385i)19-s + (−1.57 − 0.360i)21-s + (0.623 − 0.781i)25-s + (−0.433 − 0.900i)27-s + 1.61·28-s + (−0.702 − 1.45i)31-s + (0.623 + 0.781i)36-s + (−0.602 − 0.137i)37-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.235+0.971i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.235+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
−0.235+0.971i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1952,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), −0.235+0.971i)
|
Particular Values
L(21) |
≈ |
0.9776644154 |
L(21) |
≈ |
0.9776644154 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.781+0.623i)T |
| 29 | 1 |
good | 2 | 1+(0.623−0.781i)T2 |
| 5 | 1+(−0.623+0.781i)T2 |
| 7 | 1+(1.00+1.26i)T+(−0.222+0.974i)T2 |
| 11 | 1+(−0.900+0.433i)T2 |
| 13 | 1+(−0.137−0.602i)T+(−0.900+0.433i)T2 |
| 17 | 1+T2 |
| 19 | 1+(0.483+0.385i)T+(0.222+0.974i)T2 |
| 23 | 1+(−0.623−0.781i)T2 |
| 31 | 1+(0.702+1.45i)T+(−0.623+0.781i)T2 |
| 37 | 1+(0.602+0.137i)T+(0.900+0.433i)T2 |
| 41 | 1+T2 |
| 43 | 1+(−0.702+1.45i)T+(−0.623−0.781i)T2 |
| 47 | 1+(−0.900+0.433i)T2 |
| 53 | 1+(−0.623+0.781i)T2 |
| 59 | 1−T2 |
| 61 | 1+(1.26−1.00i)T+(0.222−0.974i)T2 |
| 67 | 1+(−0.137+0.602i)T+(−0.900−0.433i)T2 |
| 71 | 1+(0.900−0.433i)T2 |
| 73 | 1+(−0.268+0.556i)T+(−0.623−0.781i)T2 |
| 79 | 1+(−0.602−0.137i)T+(0.900+0.433i)T2 |
| 83 | 1+(0.222+0.974i)T2 |
| 89 | 1+(0.623−0.781i)T2 |
| 97 | 1+(1.26+1.00i)T+(0.222+0.974i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.916351866415626470738327536223, −8.077599723237157644386837386825, −7.30013179022852470924746788728, −6.91645854976125765015516903768, −6.03631453238743528186964693131, −4.51262246542365270254079404369, −3.91174556932971863591125252808, −3.26376568576919341952869216645, −2.23171053401064292144911824718, −0.58662283106179555050582212728,
1.70061124788177607234121540452, 2.87862136625238154875706835298, 3.52118520706816695812869374679, 4.64631538563051062024800012970, 5.39263506024133614144438476458, 6.00198671449767955669276453777, 6.95961641154329385418794679530, 8.171255167988821949463257887954, 8.756215618456770734374988086325, 9.303658381454771214791613818251