L(s) = 1 | + (−0.974 − 0.222i)3-s + (0.222 + 0.974i)4-s + (0.360 − 1.57i)7-s + (0.900 + 0.433i)9-s − i·12-s + (0.556 − 0.268i)13-s + (−0.900 + 0.433i)16-s + (0.602 − 0.137i)19-s + (−0.702 + 1.45i)21-s + (−0.222 − 0.974i)25-s + (−0.781 − 0.623i)27-s + 1.61·28-s + (−1.26 − 1.00i)31-s + (−0.222 + 0.974i)36-s + (−0.268 + 0.556i)37-s + ⋯ |
L(s) = 1 | + (−0.974 − 0.222i)3-s + (0.222 + 0.974i)4-s + (0.360 − 1.57i)7-s + (0.900 + 0.433i)9-s − i·12-s + (0.556 − 0.268i)13-s + (−0.900 + 0.433i)16-s + (0.602 − 0.137i)19-s + (−0.702 + 1.45i)21-s + (−0.222 − 0.974i)25-s + (−0.781 − 0.623i)27-s + 1.61·28-s + (−1.26 − 1.00i)31-s + (−0.222 + 0.974i)36-s + (−0.268 + 0.556i)37-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.768+0.639i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.768+0.639i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
0.768+0.639i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1949,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), 0.768+0.639i)
|
Particular Values
L(21) |
≈ |
0.9479089110 |
L(21) |
≈ |
0.9479089110 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.974+0.222i)T |
| 29 | 1 |
good | 2 | 1+(−0.222−0.974i)T2 |
| 5 | 1+(0.222+0.974i)T2 |
| 7 | 1+(−0.360+1.57i)T+(−0.900−0.433i)T2 |
| 11 | 1+(0.623−0.781i)T2 |
| 13 | 1+(−0.556+0.268i)T+(0.623−0.781i)T2 |
| 17 | 1+T2 |
| 19 | 1+(−0.602+0.137i)T+(0.900−0.433i)T2 |
| 23 | 1+(0.222−0.974i)T2 |
| 31 | 1+(1.26+1.00i)T+(0.222+0.974i)T2 |
| 37 | 1+(0.268−0.556i)T+(−0.623−0.781i)T2 |
| 41 | 1+T2 |
| 43 | 1+(−1.26+1.00i)T+(0.222−0.974i)T2 |
| 47 | 1+(0.623−0.781i)T2 |
| 53 | 1+(0.222+0.974i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−1.57−0.360i)T+(0.900+0.433i)T2 |
| 67 | 1+(−0.556−0.268i)T+(0.623+0.781i)T2 |
| 71 | 1+(−0.623+0.781i)T2 |
| 73 | 1+(−0.483+0.385i)T+(0.222−0.974i)T2 |
| 79 | 1+(−0.268+0.556i)T+(−0.623−0.781i)T2 |
| 83 | 1+(0.900−0.433i)T2 |
| 89 | 1+(−0.222−0.974i)T2 |
| 97 | 1+(−1.57+0.360i)T+(0.900−0.433i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.899165881763060334203911383374, −7.88400497987356771135902019543, −7.48672024357924725841629784740, −6.85740551826042833432315854811, −6.04860350983906191130208908789, −5.00650714893477179702905186032, −4.11333105819360385564572359716, −3.62442701967029038241153605060, −2.13278273125476155769238280725, −0.800422261972713066664649704950,
1.31016054440299041107434375314, 2.21223559519177904096738983261, 3.58886033954051034692267720033, 4.82799088096735540646352264618, 5.45512431409651125413961067415, 5.82828481389231086585531353608, 6.63440995374880157456025891907, 7.46787430133799321981060530066, 8.677429515708931493482146371701, 9.317256861073392824076246013254