L(s) = 1 | + (−1.15 + 0.809i)2-s + (0.630 − 1.61i)3-s + (0.688 − 1.87i)4-s + (2.22 − 1.28i)5-s + (0.575 + 2.38i)6-s + (2.01 + 1.71i)7-s + (0.722 + 2.73i)8-s + (−2.20 − 2.03i)9-s + (−1.53 + 3.29i)10-s + (−4.82 − 2.78i)11-s + (−2.59 − 2.29i)12-s + (3.36 + 1.94i)13-s + (−3.72 − 0.356i)14-s + (−0.670 − 4.39i)15-s + (−3.05 − 2.58i)16-s + (2.65 − 1.53i)17-s + ⋯ |
L(s) = 1 | + (−0.819 + 0.572i)2-s + (0.363 − 0.931i)3-s + (0.344 − 0.938i)4-s + (0.994 − 0.574i)5-s + (0.235 + 0.971i)6-s + (0.761 + 0.648i)7-s + (0.255 + 0.966i)8-s + (−0.735 − 0.677i)9-s + (−0.486 + 1.04i)10-s + (−1.45 − 0.839i)11-s + (−0.749 − 0.662i)12-s + (0.933 + 0.538i)13-s + (−0.995 − 0.0952i)14-s + (−0.173 − 1.13i)15-s + (−0.762 − 0.646i)16-s + (0.642 − 0.371i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.760 + 0.649i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.760 + 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06376 - 0.392134i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06376 - 0.392134i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.15 - 0.809i)T \) |
| 3 | \( 1 + (-0.630 + 1.61i)T \) |
| 7 | \( 1 + (-2.01 - 1.71i)T \) |
good | 5 | \( 1 + (-2.22 + 1.28i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (4.82 + 2.78i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.36 - 1.94i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.65 + 1.53i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.51 + 2.62i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.90 - 2.25i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.91 - 5.04i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.712T + 31T^{2} \) |
| 37 | \( 1 + (-3.16 + 5.48i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.66 + 3.27i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.877 + 0.506i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 0.374T + 47T^{2} \) |
| 53 | \( 1 + (2.00 + 3.47i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 6.31T + 59T^{2} \) |
| 61 | \( 1 - 9.20iT - 61T^{2} \) |
| 67 | \( 1 - 6.34iT - 67T^{2} \) |
| 71 | \( 1 - 12.0iT - 71T^{2} \) |
| 73 | \( 1 + (13.8 - 8.00i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 6.94iT - 79T^{2} \) |
| 83 | \( 1 + (-4.89 - 8.48i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.02 - 1.16i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.10 - 1.79i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82495775243025238761385324061, −10.94023283806919522654841345357, −9.690697788472842137544696621566, −8.689962575335827992671072453790, −8.270960921059030054877401456966, −7.14755897941310549955811389191, −5.75984721850268311761407246208, −5.42324646382300231841765450234, −2.53941435454327172447861028843, −1.31186952192784816837409981740,
2.02338987685295765518909105627, 3.24928481175603533245848717903, 4.65582626532629830149035670717, 6.07765257956743401584583874503, 7.79967770176710374373373385821, 8.202593522530859915711896839653, 9.693802643707665152086756154682, 10.40607275128493167333168834157, 10.51465383318135695421794973799, 11.80514736731040258233751409935